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Introduction to Radio
Astronomy

1) Stuff In space
2) Telescopes
3) Neutral Hydrogen (HI)

For an excellent rigorous
Introduction to radio astronomy:

https://science.nrao.edu/opportunities/courses/era
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Gyro-emission
The thermal gyroresonance
Sun at I nonthermal

5GHz B QYFOSynChrotron
- Thermal free-free

emission




Jupiter

Students:
What do you
think Is
causing the
radio emission
of Jupiter?

Synchrotron
Radiation




Supernova Remnants

Radio, X-ray, and
Optical
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Cassiopeia A Crab Nebula




|| ’I Wide-Field Radio Image of the
Naval Research Luboratory g
Galactic Center
Ser DHI g A =90 cm
(Kassim, LaRosa, Lazio, & Hyman 1999)
Sgr D SNR
SNR 0.9+0.1

Sgr B2 ’ New SNR 0.3+0.0

Threads
7 P New Feature:
The Cane

* €————Buckground Galaxy

i_ '> Threads

a—

New thread: The Pelican

( Sgr C  Coherent

Moiuse »

SNR 359.0-00.9 V\
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~().59
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~240) light years Tornado (SNR?)

Image processing at the Maval Rescarch Laboratory using Do) High Performance Computing Resources “
Produced by N.E. Kassim, D.S. Briggs, T.LW. Lazio, T.N. LaRosa, J. [mamura, & 5.D. Hyman
riginal data from the NRAO Very Large Array courlesy of A. Pedlar, K. Anantharamiah, M. Goss, & R, Ekers




Neutral Hydrogen (HI) In
galactic coordinates
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"“Radio Galaxies”
Lobes are

100000 I-yr
dClOSS



4000 light years

0.1 light years
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Cosmic Microwave




Telescopes

Karl Jansky 1930s




Arecibo (Puerto Rico) 300m
(1963)




The VLA In Socorro, NM
(1975, upgraded 2010)




Very Long Baseline Array -
VLBA (1994)




Robert C. Byrd Green Bank
Telescope (2000) (110 m







- I Aperture

>pherical Telescope (2016)
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Radio Emission from

Celestial Objects
Thermal Emission
 H Il Objects: Free-Free emission

Non-Thermal Emission
e Synchrotron

Spectral Lines
 HI, Molecules (CO)



H Il regions

Ionized ISM around source Source of Ionizing Photons

Neutral gas
outside ionization front

Stromgren sphere, the ionization front



Bremsstrahlung a.k.a
Braking Radiation
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Synchrotron Emission

Synchrotron
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Relativistic electrons In
magnetic fields

NON-RELLATWVISTIC
ELECTRON MOVEMENT




Spectral Lines

« Recombination (e.g. H 109a
at 5 GHz)

 Molecular (e.g. 13C0 at
110.2 GH2)

 H | Hyperfine at 21 cm (1420
MHZz)



21 cm <=> 1420 MHz

Formation of the 21-cm Line of Neutral Hydrogen
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Higher energy state: Proton and f b
slectron spins aligned Emission of
21-em
photon Lower energy state: Proton and

gleciron have cpposite spins.



UGC 11707- spiral galaxy
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Stolen from Scott Ransom (NRAO/ UV)

What do radio telescopes do?

Radio telescopes convert EM waves into output
power as a function of radio freq v and time t

The astrophysical signals are incredibly weak

and are measured in Janskys: 1 Jy = 107°W m* Hz™
Almost all of the power we measure Is noise

We usually talk about power in terms of

temperature as the units are better, as

converted using Boltzmann’s constant:

k, =1.38x102J K



Radio Telescope
Characteristics (stolen from Jessica

Rosenberg)

e The power collected by an antenna is approximately:!
=\ 1

S = flux at Earth, A = antenna area, A v = frequency

Interval or bandwidth of measured radiation!

The gain of an antennais givenby: G =4z A/ 1°

Aperture efficiency Is the ratio of the effective
collecting area to the actual collecting area!



Aperture Efficiency v. Freg

(GBT, theoretical)

cy (GHz)
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Beam width and sidelobes

Imagine sending power OUT of an antenna- how
would that power distribute itself on the sky?

{/ SIDE LOBES

Big apertures = smaller
beams=Dbetter resolution



Circular
aperture

ALFA beam




Radio Telescope

Characteristics
Temperatures

 |In radio astronomy power Is often
measured In “temperature” - the
equivalent temperature of a blackbody
producing the same power!

o System temperature Tss: temperature
of blackbody producing same power as
telescope and instrumentation without a
source (Tris kept low ~20K)

TS — Tcmb + Trsb + ATSOHI‘CC + [1 — eXp(—TA)]Tatm + Tspill + Tr —+ -




Radio Telescope

Characteristics
Temperatures

e Brightness temperature: Flux density
per unit solid angle of a source measured
In units of equivalent blackbody
temperature- non thermal sources often
nave extremely high Ts

I CQ | Is the spectral
Tb (y) — Y | brightness or
V12 intensity




Radio Telescope

Characteristics
Temperatures

« Antenna temperature: The flux density
transferred to the receiver by the antenna.
Some of the incoming power is lost,
represented by the aperture efficiency!

P’/ . kT Nyquist

approximation




Bandpass

e The frequency response: sensitivity per
channel

o Separated into N channels that have
individual AV




Bandpass

e Sensitivity loss at either end is typical:
usually discarded

6200
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Click on the abowve spectrum to choze the regions to interpolate ower, or click Default

|File: /shared/a2010-2/data/07 02, 26/ 705303603, sav




WAPP search mode

Since we do not know the redshift of our targets, we configure the WAPP
spectrometer so that each quadrant ( or “board” in WAPP-speak) covers a 25
MHz bandpass. We then set the center frequency of the boards so that they are
offset by 20 MHz, yielding a total coverage of about 85 MHz, from ~1343 MHz

to~1428 MHz.

|y 1350 1360 1370 1380 1390 1300 1410 1420 1430
Frequency {MHZ]

This shows the WAPP bandpass setup for a single polarization; the WAPPS
record both polarizations separately, and normally we average them right away.



e Radiometers

. Antennas produce voltages
 Those voltages have mean of 0 and are hard

to average to a measurable value |

» Radiometers “detect” a S @‘N / it Y]
signal, typically by
squaring It so that it can 3
be measured and/or :

Integrated
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Radiometers

e Band-limited signal voltages enter

e Nyquist-sampled, it has N = 2Av samples per sec.
(l.e. sample rate is twice the bandwidth)

e Square-law detector squares voltages

e Integrator averages them. Becomes more gaussian
with time via central limit theorem.

e Standard deviation goes down as N2

Integrate for time T

The RMS error on the measured noise

temperature of a signal (i.e. Tsys) is: T.




Observing Schemes! (via J.r.)

Position switching helps remove systematics in data!
Reduced spectrum = (ON-OFF)/OFF!
— ON: Target source observation!

— OFF: blank sky observed over the same altitude
and azimuth path traveled by target (on source). !

— corrections for local environmental noise as well as
background sky noise !

Two polarizations can be compared to identify RFI or

averaged to improve signal for an unpolarized
source!



ALFALFA Observing Technigue:
HIl 21 cm Observing in Action

 Drift scan: telescope Is fixed, the position
change is driven by the rotation of the Earth!

e Baseline shape is removed using spectra that
are adjacent in time and space!

e Because the telescope does not move, the
systematic noise does not change making the
data easier to correct!



This slide 1s the final slide

Happy Fishin’ y’all
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