Extragalactic HI Surveys

Luke Leisman UAT Workshop at Green Bank June 14, 2016

Extragalactic HI Surveys: Outline

- Review: What is HI?
- Things to think about when designing a survey to look for HI in galaxies

- The radiometer equation
- Survey "Figure of Merit"
- Example HI surveys
 - What we do: ALFALFA
 - What we do: APPSS
- The Future of HI Surveys

What is HI?

- HI is atomic hydrogen
 - (as opposed to HII = ionized hydrogen)

p

- Why do we care about HI?
 - Different biases than optical samples:
 - Optical misses galaxies with few stars or diffuse objects, we still see them.

21 cm/1420

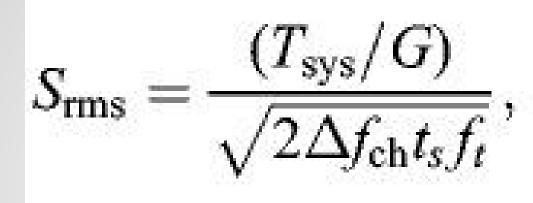
Photon

- We see parts of galaxies we otherwise miss gas traces a galaxy's rotation to large radii.
- Stars form from (molecular) gas:
 - Atomic gas is a galaxy's reservoir of gas.

AL FAL FA

Gas rich galaxies are the galaxies forming stars.

Survey Design: Blind vs Targeted


- Targeted Surveys:
 - Choose specific galaxies to observe
 - Good: Efficient
 - Bad: Selection bias
- Blind Surveys:
 - Choose where to look without prior knowledge

AL FAL FA

- Good: No selection bias
- Bad: Time consuming (requires sensitive telescopes)

Survey Design: How Long to Look

• The radiometer equation for our observations

For Arecibo LBW: $T_{sys} \sim 30K$ $G \sim 11 \text{ K/Jy}$ For GBT L-band: $T_{sys} \sim 20K$ $G \sim 2 \text{ K/Jy}$

- Δf : is the bandwidth per channel
- t_s : is the effective integration time, in secs
- f_t : other losses (smoothing, bandpass subtraction, clipping, etc.)

I FAL FA

- 2 from two independent polarizations.
- See Giovanelli + 2005, AJ 130, 2598

How "fast" is your survey?

$$FoM \propto (A_{\rm eff}/T_{\rm sys})^2 \Omega_{\rm fov} BW$$

- HI survey "figure-of-merit" depends on:
 - Sensitivity: Collecting area & system noise

- field-of-view & number of beams (pixels)
- Bandwidth (redshift coverage)

Survey Design: Other Considerations

- Radio frequency interference (RFI)
- Angular Resolution:
 - Source confusion
 - Resolved sources; impact on sensitivity
- Computational requirements
- Telescope Scheduling
 - Possibility of commensal surveys
 - What part of the sky??
- Auxiliary data at other wavelengths?

AL FAL FA

And more...

Which telescope do you choose?

Tsys=30K FOV=7*3.5^2

Low Confusion Bad RFI

Limited sky area Large sky area

GBT

D=100m Tsys=20K FOV=1*9^2 High Confusion Good RFI Large sky area Parkes

D=74m

Tsys=28K FOV=13*15^2 Very High Conf.

Good RFI

Large sky srea

Past and Current HI Surveys

Pre-1990s: Targeted Surveys Mid-90s-present: Blind (and targeted) Surveys

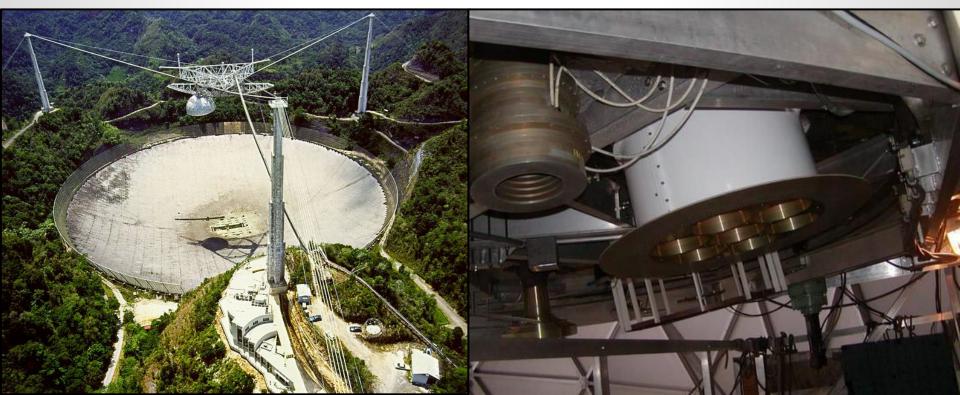
Table 1	Comparison	of major	blind HI	surveys
---------	------------	----------	----------	---------

Survey	Beam (')	Area (deg ²)	δ_v (km s ⁻¹)	rms ^a (mJy)	$V_{\rm med}$ (km s ⁻¹)	N _{det}
AHISS	3.3	13	16	0.7	4800	65
ADBS	3.3	430	34	3.3	3300	265
HIPASS	15.	30000	18	13	2800	5000
AGES	3.5	200	11	0.7	9500	2900
ALFALFA	3.5	6920	11	1.7	8200	31000

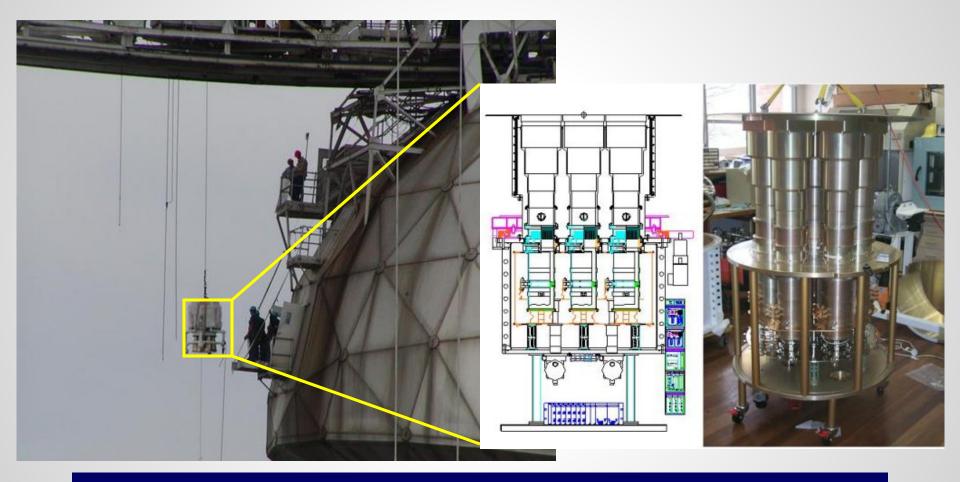
AL FAL FA

Extragalactic HI Surveys: Outline

- Review: What is HI?
- Things to think about when designing a survey to look for HI in galaxies


- The radiometer equation
- Survey "Figure of Merit"
- Example HI surveys
 - What we do: ALFALFA
 - What we do: APPSS
- The Future of HI Surveys

Design to Practice: Introducing...



The Arecibo Legacy Fast ALFA Survey

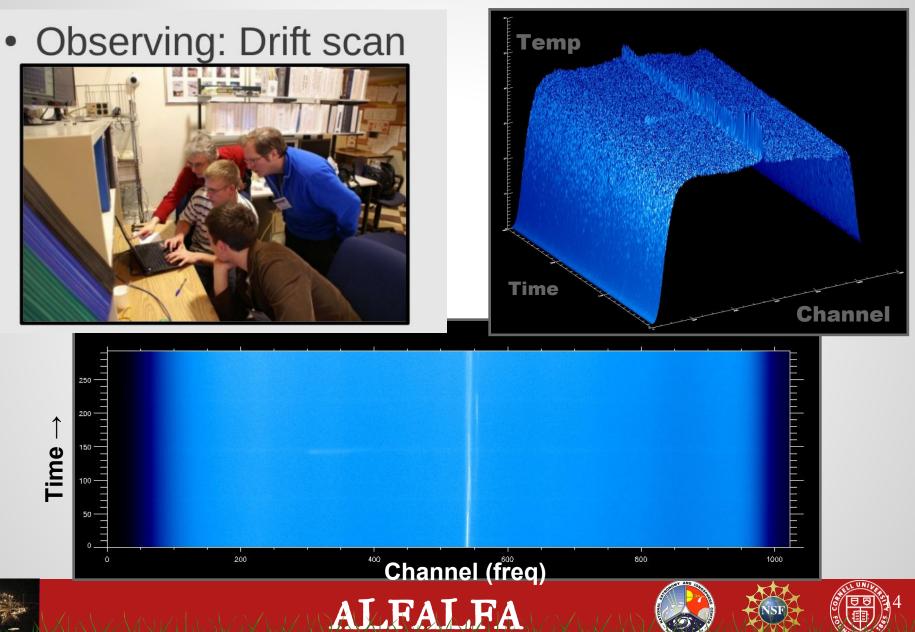
ALFA = <u>Arecibo L-band Feed Array</u>

ALFA: A "Radio Camera"

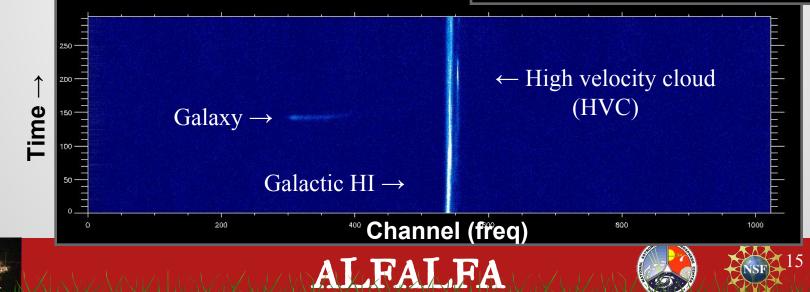
Arecibo L-band Feed Array (ALFA)

So what is ALFALFA?

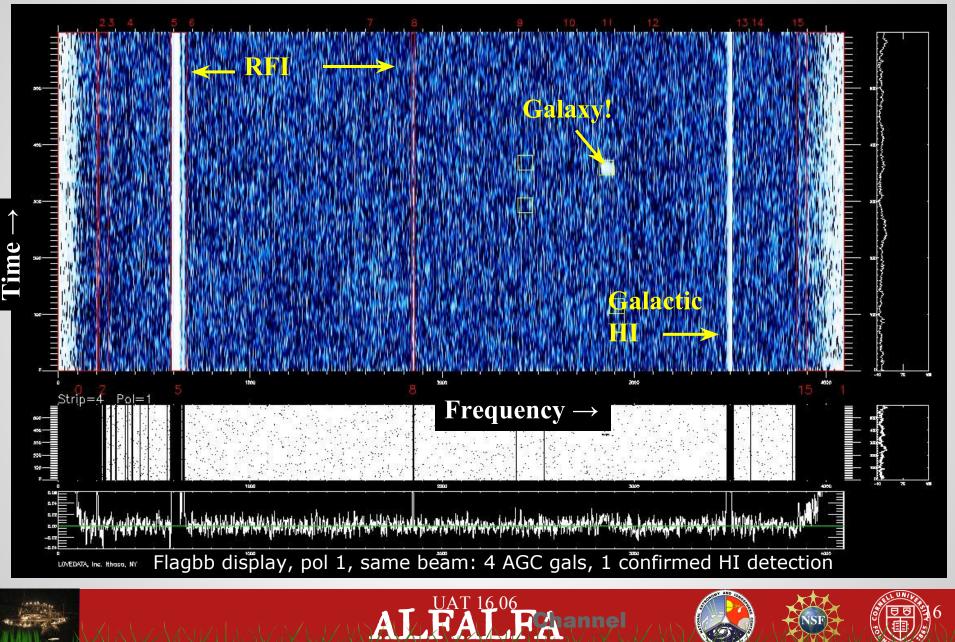
- A radio survey at 21cm
 - Ax better resolution and 10x better sensitivity than previous 21cm surveys
- Survey of local galaxies
 - o z≤0.06, ie distance ≤250
 Mpc (local group ~1 Mpc)
- "Blind" Survey of ~17% of the sky
- A perennial flowering plant in the pea family; often feeds large farm animals



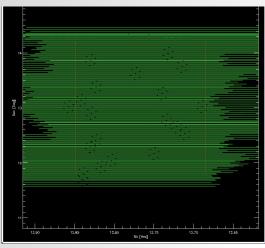
How does ALFALFA work?

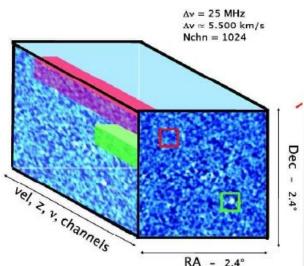

How does ALFALFA work?

Data reduction



"If you want to make omelettes you've got to break some eggs!"





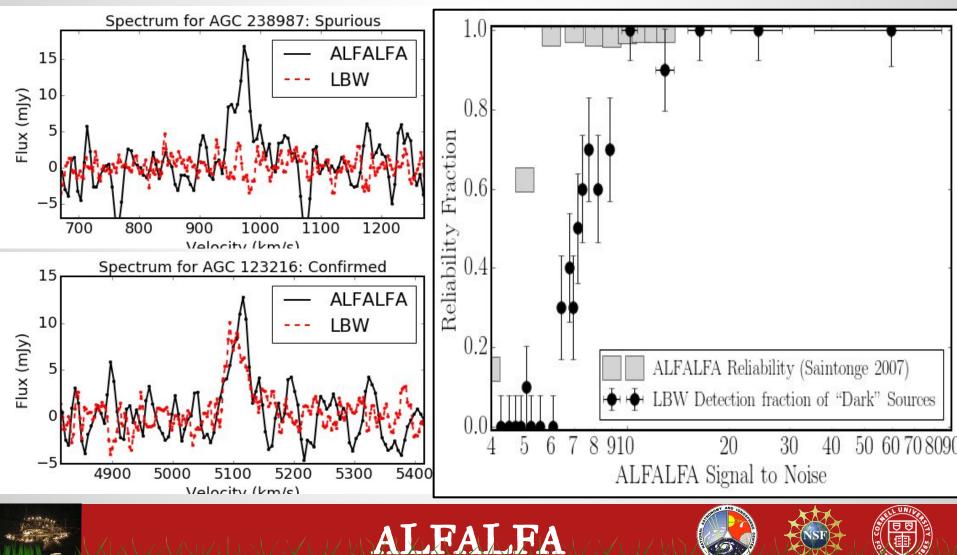
Dealing With RFI...

From Drifts to Grids

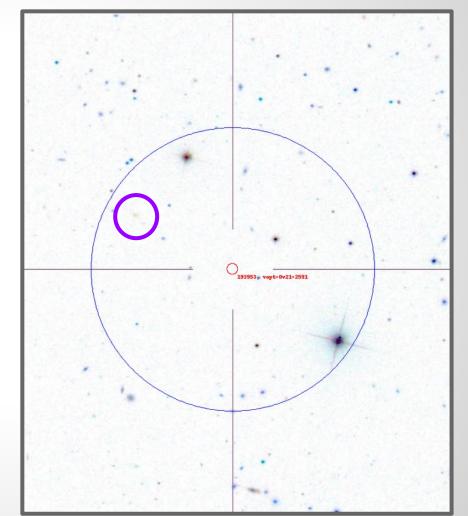
- Combine individual drift scans to produce a 3-D data cube, "grid"
- Standard ALFALFA grids are 2.4°x2.4°
- Each "grid" region of the sky is split into 4 frequency (cz), partially overlapping cubes, of 1024 freq/vel chans/each

Source Extraction

		ALFALFA Catalog creator	×
File Imaging			
(1) HI152947.8+2608 (2) HI152953.5+0411 (1) HI152955.8+0726 (1) HI152956.8+0726 (2) HI153000.8+1255 (2) HI153003.0+2618 (4) HI153004.8+0837 (1) HI153003.3+2526 (4) HI153003.3+2526 (4) HI153003.3+2526 (5) HI153013.3+2400 (1) HI153020.8+0745 (3) HI153023.9+2716 (1) HI153031.3+0656 (1) HI153031.9+1442 (1) HI153034.0+0506 (1) HI153034.0+0506 (1) HI15305.0+2644 (1) HI153037.2+2726	105_1532+05c.src \$	Prior Stot(profile, G): 0.00+/- 0.00 Jy km/s Isophote: 880. mJy km/s Map Stot: 1.92+/- 0.00 Jy km/s Map Smax: 1759. mJy km/s Marginal meanS, peakS: 11.7 27.6 mJy rms: 2.35 mJy km/s cz Err Si Low StN S/N G: 0.0 0.0 0.0 0.0 Low StN S/N G: 0.0 0.0 0.0 0.0 Uddth Err Si Width Err Si Prior- Status Code: 1 0.0 0.	I/Noise I/Noise
Contour B79 439 100 200 300 500 1000 Select Isophote:	879 =	$\begin{array}{c} H1152947.8 + 260508 & 879 \text{ mJy km/s level} \\ \hline \\ 40 \\ \hline \\ 20 \\ \hline 20 \\ \hline \\ 20 \\ \hline \\ 20 \\ \hline 20 \\$	


ALFALFA

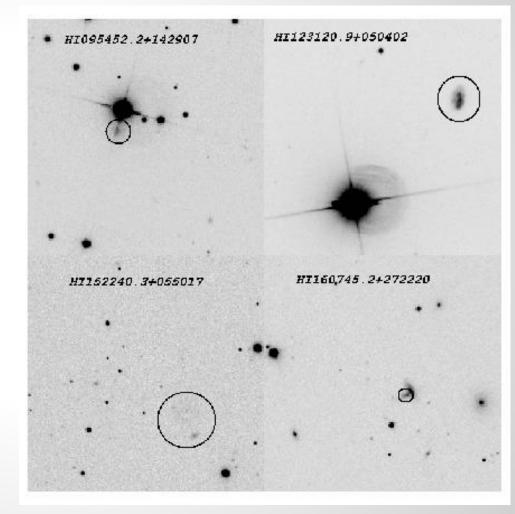
ALEALEA Catalog croato


Problem: are the detections real?

Solution: follow up with more Arecibo observations

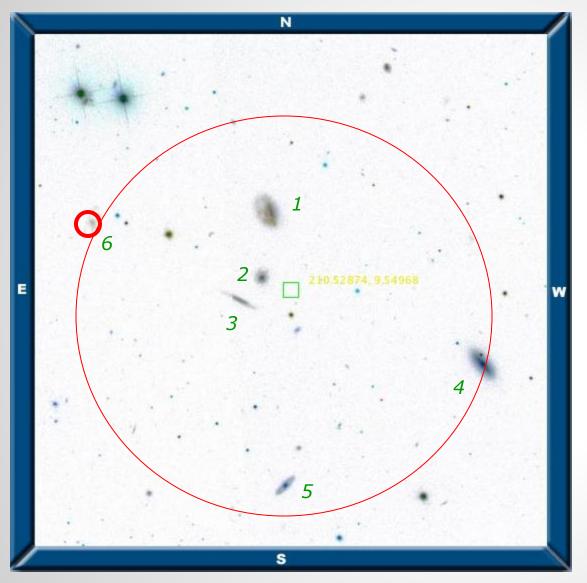
Identifying Optical Counterparts

- ALFALFA does not resolve galaxies
- Beam (resolution) ~3.5' (~200x normal optical telescopes)
- Sources not in the center of the beam
- Sometimes stars in the way



Identifying Optical Counterparts

ALFALFA


Of 15855 sources in a.40:

- 1013 have no OC
- 844 are likely part of the MW
- 199 (<2%)
 extragalactic
 "darks"
- Of those, <50 are "isolated"

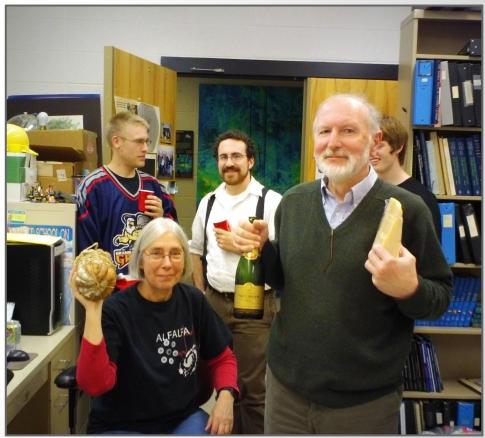
ALFALFA advantage for finding the OC

J<u>AT 16.06</u>

Centroiding accuracy goes roughly as HPFW(PSF)/(S/N)

Suppose HIPASS detects a source at S/N~6 near 3000 km/s in this field. The position error box will have a radius of ~2.5'.

The opt counterpart could be gal #1, 2, 3, 4, 5 or 6.

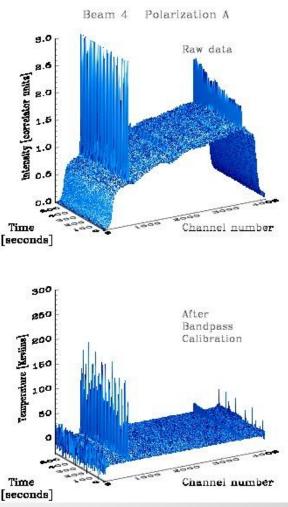

ALFALFA will detect the same source with S/N~50!!

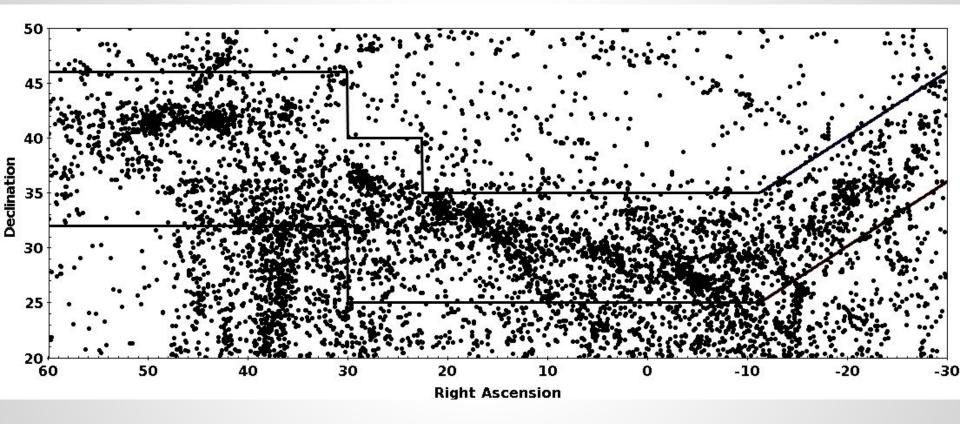
and the Arecibo beam is $\frac{1}{4}$ as wide as the Parkes one

→ The same source will have an ALFALFA position error of ~ 0.1'

The current state of ALFALFA

- Observing is done!
 - 4742 hours over almost
 8 years
 - 808 observing runs
 - 99 observers
- All level 1 processing done
- Catalog >70% complete
- >25,000 extragalactic sources!




Aside: Drift Scan vs Position Switching

- Sources much weaker than noise (Tsys)
- Need to subtract away known noise = blank sky
- Drift scan: lots of blank sky
- Pointed observing: Need to also point at blank sky (ON/ OFF pointings)

APPSS

Future HI Surveys: Interferometers

Upgraded Telescopes The JVLA

WSRT

New Telescopes

ASKAP

MeerKAT

'eys
Ð
2
nrve
2
S
I
Φ
Ŧ
utur

Survey	Res.# (")	Area (deg ²)	Z	$N_{\rm det}^{\dagger}$	Ref	Note
VLA-B						
CHILES	5	0.8	<0.5	300	а	COSMOS deep field
WSRT/APERTIF						
WNSHS*	15	3500*	<0.26	50000*	b	Shallow, wide area
MediumDeep*	15	200*	< 0.26	$1 \times 10^{5*}$	с	Selected fields
ASKAP						
WALLABY	30	30000	< 0.26	>3×10 ⁵	d	Shallow, wide area
DINGO-DEEP	10	150	0.1-0.26	50000	e	GAMA region
DINGO-UDEEP	10	60	0.1-0.43	50000	e	GAMA region
FLASH	30	Targeted	0.5-1.0	few 100s	f	HI absorption
MeerKAT						
MHONGOOSE ^{&}	12	30×0.8		30&	g	30 nearby galaxies
LADUMA	12	4	<1.4	10000	h	ECDF-S deep field

Giovanelli & Haynes 2016

Summary

- Lots to consider designing HI surveys
 - How long to look
 - How fast can you survey a volume of space
 - Lots of other things (RFI, confusion, etc.)
- ALFALFA is a state of the art blind HI Survey
 - Drift scan observing
 - Lots of reduction steps
 - Identifying OCs
- Lots of Exciting Future Science
 - APPSS
 - Surveys with upgraded and new telescopes

