Star Formation and HI in Groups and Clusters

UAT Ha Followup of Group Galaxies

Becky Koopmann,

with Lucas Viani, Halley Darling, Michael Warrener; Ryan Muther (Union College),
Adriana Durbala, Ben Hendrickson, Jesse Watson (UWSP)
+ Josh Alvarez (WTA&M), Kyle Murray, Steven Grzeskowiak (Hartwick),

How is gas converted to stars?

Why do some galaxies have gas and others do not?

What determines star formation history? Morphology?

Spiral Galaxy NGC 3982

Morphology

Spirals

Elliptical Galaxy NGC 1132

Hubble Heritage

star-forming
relatively gas-rich
organized motions

little/no star-formation
relatively gas-poor (cold)
randomized motions

Star formation as a tracer of gas

Effects of hot young stars

Hydrogen Oxygen

> HST image of star-forming region in the Large Magellanic Cloud

Colors of Galaxies

- First method used to determine SFRs
- Hot young stars are bright in UV and blue
- Older, cooler stars are brightest in red
- Color measures slope across visible region

Color-Age Connection

O-B stars burn out quickly and leave main sequence in 10 Myr

Galaxies have populations of stars: spectrum is net of all stars

Model populations with collections of stars

Integrated Spectra of Galaxies

Color used for quick look or where spectra not available Color-Magnitude Diagram (CMD)

RED

BLUE

Schematic CMD many ellipticals red sequence green valley If gas lost, star **formation halts** blue cloud many spirals & irregulars

Low luminosity

High luminosity

Recombination Lines

Strength of emission lines varies with the age of the stellar population

Ha Emission from HII Regions

http://www.ucolick.org/~bolte/AY4_00/week3/HII_region.gif

Ha as a Tracer of Star Formation

- Balmer Series n=3 to n=2;656 nm
- Common line

Measuring Star Formation Rates from Ha

 Relate Ha flux to amount of ionizing radiation (Only stars with M >10 M^o and lifetimes <20 Myr contribute significantly to the integrated ionizing flux)

Convert to total star formation rate using stellar initial mass function to determine how many stars of a given stellar mass to use (e.g. Kennicutt 1998)

$$SFR(M_{\odot} yr^{-1}) = 7.9 \times 10^{-42} L(H\alpha) (ergs \ s^{-1})$$

H α is used most commonly, but you can use other H lines too (H β , Pa β , Pa α , Br γ)

Many other indicators of star formation Other recombination lines: H, O • Ultraviolet: direct tracer of hot stars (but extinction is a problem) GALEX • Infrared: traces dust heated by hot stars - Spitzer, WISE All have caveats Ideally use multiple indicators, e.g. Ha + IR

 $SFR(M_{\odot} \text{ yr}^{-1}) = 5.3 \times 10^{-42} [L(H\alpha)_{obs} + (0.031 \pm 0.006)L(24 \,\mu\text{m})]$

SFRs vary with redshift

- Observation of high-redshift universe show that SFRs were higher in the past.

Hippelein et al. 2003

Dependent on Environment, Time

Why do galaxy properties vary with environment?

Psychology of Galaxies Galaxy Formation (Nature)

vs. Galaxy Environment (Nurture)

Galaxy-galaxy Interactions

Interactions change distributions of gas and stars Interacting Galaxies Arp 273

Types of Tidal Interactions ★ Result of interaction depends on ★ Mass ratio ★ Relative velocities ★ Gas content ★ Merging / Cannibalism / Accretion * Slower speeds, e.g., group environments ★ Non-merging ★ Faster speeds, e.g. Cluster environments * Repeated: "Galaxy harassment" ★ These interactions affect gas and stars – change morphology?

TIDAL INTERACTIONS IN M81 GROUP

Stellar Light Distribution

21 cm HI Distribution

Gas sensitive tracer of interactions

Haynes et al. (2007)

250 kpc

NGC 4532 in Virgo

Galaxy-Cluster Interactions: Ram Pressure Stripping

The hot intracluster medium strips neutral hydrogen gas (HI) from galaxies, but stars undisturbed

Kenney et al. (2004)

Chandra X-ray

Piontek & Stone (2001)

Starvation/Strangulation

(e.g., Larson et al. 1980)

Intragalactic medium (IGM) strips extended gas halo Milder form of gas stripping Prematurely halts star formation

(Images from Balogh)

Galaxies in Clusters: Truncated HI

HI Deficiency Parameter

HI Def = log $\frac{M_{HI}(expected)}{M_{HI}(observed)}$

Giovanelli & Haynes (1983) Solanes et al. (2001) Toribio et al. (2012)

HI stripped from outside inRam-pressure?

Vírgo, A Laboratory for Studying Galaxy Evolution

Which Environmental Effects Most Important?

Low luminosity

red sequence

green valley

High luminosity

blue cloud

Clusters:

- Conflicting results
- Tidal less important?
- How to explain morphologydensity relation?

Groups:

- Less studied
- Tidal more
 - important? .
- Pre-processing?

BLUE

RED

UAT Groups Project

- 11 UAT Institutions
- Study properties of galaxies in groups within ALFALFA and SDSS footprints
- Groups have X-ray observations, some have intragroup medium

UAT Groups Ha Survey Data

- MOSAIC CCD images from the 0.9 meter telescope at KPNO (Kitt Peak National Observatory) in Arizona
- 3 runs: 2011, 2012, 2013: NOAO/WIYN UWSP
- Broad band R Harris (15 min)
- Narrow band (80 Å) Ha filter (100 min)
- Central field and "outer" field
- All 11 UAT groups have at least 1 field

Team	Group	Alternate Name	# Fields Observed	# Fields Reduced
GSU	WBL 226	NRGb041	2	1
Siena	MKW 10	NRGb151	2	2
SLU	HCG 59	NRGb157	2	2
Hartwick	WBL 368	NRGb168	2	2
UWSP	WBL404/406	NRGb206	4	4
Skidmore/Siena	MKW 11	NRGb247	2	2
Colgate/SLU/ WTA&M	Zw 1400+09	NRGb282	5	4
St. Mary's	WBL 509	NRGb301	2	1
Siena/Colgate	WBL 251	NRGs076	1	0 (part missing)
Union	NGC 5846		7	7
Lafayette	WBL 477	NRGs272	1	1
Siena LCS	NGC 6107	NRGs385	1	0
Siena LCS	MKW 8		1	1

Example of R and Ha Image

R Filter Image

Ha Filter Image

NGC 5846 Radial Profile Examples

Graphs show surface brightness as a function of radius, with surface brightness **Optical Radius** found by averaging flux over elliptical annuli 18 AGC 9573 19 20 21 AGC 9573 This galaxy exhibits star formation over 26 most of its optical 27 28 extent 100 0 10 20 30 40 50 60 70 80 90 r (")

Truncated Star Formation

Truncated and Depressed Star Formation

Ha Imaging leads to Follow-up with LBW *Low mass galaxies and HI-depleted galaxies not detected by ALFALFA * Star formation indicates gas is present * Select galaxies for followup: *Ha emission in KP image * Galaxies w/in 2 Mpc of group center and w/in reasonable velocity range that have SDSS emission lines indicating star formation *No/marginal ALFALFA detection

Important caveat for spectra: SDSS Fiber ~ 4 " \rightarrow only central SF traced

Let's reduce/observe!