Introduction to Arecibo, ALFA and ALFALFA

Martha Haynes
UAT13  13.01.14
ALFALFA: A Census of Gas-bearing Galaxies

- A galaxy is a gravitationally bound object that consists of billions (and billions) of stars, gas clouds (of varying temperature and density = interstellar medium), dust clouds (mixed with the gas), and (so it seems), 90% dark matter.

- Optical surveys, like the Sloan Digital Sky Survey, detect the stellar component of galaxies.

- ALFALFA is designed to detect the cool (not hot; not cold) atomic gas in and near galaxies.

- ALFALFA is a blind survey; we observe the whole area of sky, whether or not we think/know there is an optical galaxy there.

- ALFALFA is a spectroscopic survey; not only do we detect the HI line flux, we also measure its frequency (velocity) and the width of the HI line (a measure of rotational velocity).
HI?? Who cares??

$$\Omega_{\text{baryons}} = 0.045 +/- 0.004 \sim \frac{1}{6} \Omega_{\text{matter}}$$

Coronal + diffuse IG gas ~ 0.037

Stars ~ 0.003

Cluster IGM ~ 0.002

Cold Gas ~ 0.0008 (~2/3 atomic)

HI contributes a piffling fraction of cosmic matter in baryons

HI: a different view

Fukugita & Peebles
2004
21-cm Line of Atomic HI

Through Hydrogen maser measurements the frequency is:

$$1,420,405,751.7667 \pm 0.0010 \text{ Hz}$$

Energy \( \frac{hc}{\lambda} \approx 5 \times 10^{-6} \text{ eV} \)

Compared to energy of a visible light photon which is about 2 eV.

- In the MW there are some \(10^{66.5}\) HI atoms;
- At the rate \(A_{10}\), about \(10^{52}\) atoms per sec would emit a photon.
- In reality, the transition probability is \(10^5\) times larger than \(A_{10}\)
- Hence the galactic HI emission is very easily detectable.

About 4.4\% of the visible matter in our galaxy is HI => \(4.8 \times 10^9 \text{ M}_\odot\).

The fraction of interstellar space filled with HI clouds is 20\% to 90\%.
HI emission from galaxies

- Under most circumstances, the total H I mass can be derived from the integrated line profile; that is, the flux (integrated over all frequencies where there is signal) is proportional to the number of hydrogen atoms.

- The frequency (velocity) spread of the line reflects the velocities of the gas atoms, not quantum mechanics => hence the width of the line tells about the motions of the gas (rotation within the galaxy or turbulence, expansion, etc)

\[ \int S dV \rightarrow \text{HI mass} \]
\[ V \rightarrow \text{Distance} \]
\[ \Delta V \rightarrow \text{Mass} \]

Rest frequency 1420.4058 MHz
Clues from the HI line

- **Redshifts** (=> distances via Hubble's Law)
- **HI mass and distribution** (for extended objects)
  - Normal, star-forming disks
  - Low mass, LSB dwarfs
  - Potential for future star formation (HI content)
  - HI deficiency in clusters
  - History of tidal events
- **Rotational velocities**
  - Dark matter
  - Redshift-independent distances via Tully-Fisher relation
- **HI absorption**: optical depth
  - Link to Ly-α absorbers
  - Fundamental constant evolution

[Image: HI in M31 Credit: R. Braun]

\[ \int SdV \rightarrow \text{HI mass} \]
\[ V \rightarrow \text{Distance} \]
\[ \Delta V \rightarrow \text{Mass} \]
HI: The fuel for star formation

M81 - Spiral Galaxy (Type Sb)

Distance: 12,000,000 light-years (3.7 Mpc)
Image Size = 14 x 14 arcmin
Visual Magnitude = 6.9

X-Ray: ROSAT
Ultraviolet: ASTRO-1
Visible: DSS
Visible: R. Gendler
Near-Infrared: Spitzer
Mid-Infrared: Spitzer
Far-Infrared: Spitzer
Radio: VLA

http://coolcosmos.ipac.caltech.edu/cosmic_classroom/multiwavelength_astronomy/multiwavelength_museum/m81.html
In some cases, the HI reveals interaction where the optical does not: M81/M82 system

TIDAL INTERACTIONS IN M81 GROUP

Stellar Light Distribution

21 cm HI Distribution

Credit: NRAO, Yun et al.
HI: Probing Dark Matter

NGC 5055: Optical
HI: Probing Dark Matter

NGC 5055 Optical (left); HI (right)
Tom Osterloo
The HI 21 cm line @ 1.42 GHz

HI : Why do we care?

• Easy to detect, simply physics ➔ cold gas mass
• Good index of SF fertility ➔ future SF
• Comparative HI content ➔ HI deficiency
• Excellent tracer of host dynamics ➔ dark matter
• Useful Cosmology tool ➔ TF relation, HIMF, BAO
• Interaction/tidal/merger tracer
• Can be dominant baryon form in low mass galaxies

• ALFALFA: A census of HI in the local universe
ALFALFA Science Goals

1. Census of HI in the Local Universe over cosmologically significant volume
2. Determination of the faint end of the HI Mass Function and the abundance of low mass gas rich halos
3. Environmental variation in the HI Mass Function
4. Blind survey for HI tidal remnants
5. Determination of the HI Diameter Function
6. The low HI column density environment of galaxies
7. The nature of HVC’s around the MW (and beyond?)
8. HI absorbers and the link to Ly $\alpha$ absorbers
9. OH Megamasers at intermediate redshift $0.16 < z < 0.25$
Comparison of blind HI surveys

<table>
<thead>
<tr>
<th>Survey</th>
<th>Beam</th>
<th>Area</th>
<th>rms</th>
<th>min $M_{HI}$</th>
<th>$N_{det}$</th>
<th>$t_s$</th>
<th>#/sqd</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHISS</td>
<td>3.3</td>
<td>13</td>
<td>0.7</td>
<td>2.0x10^6</td>
<td>65</td>
<td>var</td>
<td>5</td>
</tr>
<tr>
<td>ADBS</td>
<td>3.3</td>
<td>430</td>
<td>3.3</td>
<td>9.6x10^6</td>
<td>265</td>
<td>12</td>
<td>0.6</td>
</tr>
<tr>
<td>HIPASS</td>
<td>15.3</td>
<td>30,000</td>
<td>13</td>
<td>3.6x10^7</td>
<td>5300</td>
<td>460</td>
<td>0.18</td>
</tr>
<tr>
<td>J-Virgo</td>
<td>12</td>
<td>32</td>
<td>4</td>
<td>1.1x10^7</td>
<td>31</td>
<td>3500</td>
<td>1</td>
</tr>
<tr>
<td>HIDEEP</td>
<td>15</td>
<td>32</td>
<td>3.2</td>
<td>8.8x10^6</td>
<td>129</td>
<td>9000</td>
<td>4</td>
</tr>
<tr>
<td>AGES7448</td>
<td>3.5</td>
<td>35</td>
<td>0.6</td>
<td>1.6x10^6</td>
<td>175</td>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>ZOA10</td>
<td>3.5</td>
<td>138</td>
<td>5</td>
<td>1.2x10^6</td>
<td>72</td>
<td>8</td>
<td>0.5</td>
</tr>
<tr>
<td>ALFALFA</td>
<td>3.5</td>
<td>7,000</td>
<td>1.7</td>
<td>4.4x10^6</td>
<td>&gt;30,000</td>
<td>40</td>
<td>6</td>
</tr>
</tbody>
</table>

ALFALFA is ~ 1 order of magnitude more sensitive than HIPASS with 4X better angular resolution.

Median cz for HIPASS ~ 2800 km/s
For ALFALFA ~ 7800 km/s

ALFALFA detects 29X the source density (number of sources per square degree) of HIPASS
ALFALFA: A 2\textsuperscript{nd} generation HI survey

- In comparison with opt/IR, the HI view is largely immature
- HIMF based on only few thousand objects (HIPASS)

ALFALFA:

- Designed to explore the HI mass function over a cosmologically significant volume
  - Higher sensitivity than previous surveys
  - Higher spectral resolution => low mass halos
  - Higher angular resolution => most probable optical (stellar) counterparts
- Deeper: 3X HIPASS median redshift => volume
- Wider area than surveys (other than HIPASS) => nearby volumes for lowest \( M_{\text{HI}} \) => cosmologically significant volume
Arecibo Legacy Fast ALFA Survey

- One of several major surveys currently ongoing at Arecibo, exploiting its new multibeam capability

- An extragalactic spectral line survey (mainly HI)
- Covers 7000 sq deg of high galactic latitude sky
- 1345-1435 MHz (-2000 to +17500 km/s for HI line)
- 5 km/s resolution (100 MHz/4096 channels)
- 2-pass, drift mode (total int. time per beam ~ 40 sec)
- 1.5-2 mJy rms (per spectral resolution element)
- started Feb 4, 2005; completed Oct 26, 2012 (drift scans)
  - 4741.5 hours, 808 runs, 99 observers
- 41+4 refereed papers to date
- An “open collaboration”: let’s do science!

http://egg.astro.cornell.edu/alfalfa
Arecibo Legacy Fast ALFA Survey

- An extragalactic spectral line survey (mainly HI)
- Covers 7000 sq deg of high galactic latitude sky
- 1345 - 1435 MHz (-2000 to +17500 km/s for HI line)
- 5 km/s resolution (100 MHz/4096 channels)
- 2-pass, drift mode (total int. time per beam ~ 40 sec)
- 1.5 - 2 mJy rms (per spectral resolution element)
- Started Feb 4, 2005; completed Oct 26, 2012 (drift scans)
- 4741.5 hours, 808 runs, 99 observers
- 41+4 refereed papers to date
- An "open collaboration": let's do science!
- One of several major surveys currently ongoing at Arecibo, exploiting its new multibeam capability

http://egg.astro.cornell.edu/alfalfa
Arecibo Legacy Fast ALFA Survey
Arecibo Legacy Fast ALFA Survey

• One of several major surveys currently ongoing at Arecibo, exploiting its new multibeam capability

• An extragalactic spectral line survey (mainly HI)
• Covers 7000 sq deg of high galactic latitude sky
• 1345-1435 MHz (-2000 to +17500 km/s for HI line)
• 5 km/s resolution (100 MHz/4096 channels)
• 2-pass, drift mode (total int. time per beam ~ 40 sec)
• 1.5-2 mJy rms (per spectral resolution element)
• started Feb 4, 2005; completed Oct 26, 2012 (drift scans)
  • 4741.5 hours, 808 runs, 99 observers
• 41+4 refereed papers to date
• An “open collaboration”: let’s do science!

http://egg.astro.cornell.edu/alfalfa
ALFA: Arecibo L-band Feed Array

Total Incoherent Multi Beam Pattern
TE_{11} Mode Horn 25.0 cm x 26.0 cm

Sky Area 25' x 25' at 1.375 GHz
It is a radio “camera”

Arecibo L-band Feed Array
Drift scanning

7 elliptical beams Avg(HPBW)=3.5' on elliptical pattern of axial ratio ~1.2
Array rotation

The individual feed horns move along an elliptical ring oriented in Az, ZA.

Note: The beams are actually elliptical, NOT circular.
Fig. 2.— Sketch of the geometry of the ALFA footprint, with the array located along the local meridian and rotated by an angle of 19° about its axis. The outer boundary of each beam corresponds to the -3 dB level. The dashed horizontal lines represent the tracks at constant Declination of the seven ALFA beams, as data is acquired in drift mode.
Spectrometer setup for ALFALFA

ALFA spectra:

16 x 4096 frequency channels (2 not used)

7 beams x 2 polarizations/beam

100 MHz wide

Centered at 1385 MHz

So resolution is 100 MHz/4096 channels
Radio Frequency Interference

- Man-made signals are much stronger than cosmic ones!
- Some are always present; others come and go.
- Radars (e.g. FAA at San Juan airport) occur with some regular period (e.g. 12 sec)
- Some RFI is so strong that it “saturates” the front end.
- Some RFI can be avoided through coordination (Puntas Salinas)

We have to live with it (but we don’t have to like it!).

See: http://www.naic.edu/~a2010/rfi_common.htm
### RFI List

#### User Record Viewer

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Power</th>
<th>Date</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1241.75</td>
<td></td>
<td></td>
<td>active Radar</td>
<td><strong>Aerostat</strong> radar balloon in lajas. dual freq or quad freq modes. 160 nsec per pulse, chirped. Rotation rate 11.59 sec. Blanks toward AO. (see radar info)</td>
</tr>
<tr>
<td>1244.6</td>
<td>1.67</td>
<td>jan97</td>
<td>active Radar</td>
<td><strong>Remy Radar</strong> at the end of the runway. (fps20-93a). 12 sec rotation rate, single ipp of 2781. Runs in 1270 or 1290 mode (not simultaneously). (see radar info)</td>
</tr>
<tr>
<td>1256.5</td>
<td>.2</td>
<td>feb02</td>
<td>active Radar</td>
<td><strong>Distomat</strong> birides. Occur every 2 minutes for a few seconds. Az dependent. Distomats have a 27 Mhz clock. Data was measured in jan01 (before shielding work) Data was remeasured in apr02 (after some shielding work). The window was changed</td>
</tr>
<tr>
<td>1261.25</td>
<td></td>
<td></td>
<td>FAA airport radar</td>
<td>12 sec rotation, 5 ipp about 2.5 ms, 5 usec pulse, 1350 then 1330 pulse sent each ipp. (radar info)</td>
</tr>
<tr>
<td>1287.5/1299.84</td>
<td>.025</td>
<td>jan01/apr02</td>
<td>active Radar</td>
<td><strong>Radars with 1.94 sec rotation</strong> rates. (more info). These radar were probably associated with military ship practices. Fast rotating radars are needed when objects move far within 1 rotation (planes near aircraft carriers, etc..)</td>
</tr>
<tr>
<td>1300/1399.83</td>
<td>.2</td>
<td>jan97</td>
<td>active Radar</td>
<td><strong>GPS L3 downlink</strong>. (more info)</td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td></td>
<td>active Radar</td>
<td><strong>beeper</strong> harmonic (3rd of 462.85)</td>
</tr>
<tr>
<td>1411.52</td>
<td>.024</td>
<td>98</td>
<td></td>
<td><strong>beeper</strong> harmonic (3rd of 462.875) (borinquen beepers)</td>
</tr>
<tr>
<td>1412.5</td>
<td></td>
<td></td>
<td></td>
<td><strong>dome camera</strong> birides. part of a corab of 14.3185 Mhz. (more info).</td>
</tr>
<tr>
<td>1330/1350</td>
<td>.2</td>
<td></td>
<td>FAA airport radar</td>
<td><strong>beeper</strong> harmonic (3rd of 463.6 (mr. beeper)</td>
</tr>
<tr>
<td>1366.2/1382.66</td>
<td></td>
<td></td>
<td></td>
<td><strong>tvChann20</strong> arecibo. Drifted around with time. They were having trouble with their transmitter. (more info)</td>
</tr>
<tr>
<td>1324/1340</td>
<td>.024</td>
<td>93</td>
<td></td>
<td><strong>tvChann54</strong> 2nd harmonic</td>
</tr>
<tr>
<td>1387.3/1371.0</td>
<td></td>
<td></td>
<td></td>
<td><strong>Inmarsat stdBC</strong> ship, portable earch downlinks</td>
</tr>
<tr>
<td>1381.05</td>
<td>.024</td>
<td>98</td>
<td></td>
<td><strong>Inmarsat stdM</strong> ship downlinks</td>
</tr>
<tr>
<td>1388.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1388.6</td>
<td></td>
<td>.024</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>1388.858</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1417.495</td>
<td>&lt;190 (hz)</td>
<td>may02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1390.8</td>
<td>.024</td>
<td>reb93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1407</td>
<td>.3</td>
<td>apr01/fixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1422.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1525-1545</td>
<td>aug03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Done**
RFI is ugly

FAA radar

Galactic hydrogen

Galaxy!

harmonic

Record/time/R.A. →

Channel number/frequency →
Two-pass strategy

We want to drift across each stop on the sky TWICE
• Double integration time
• Helps to discriminate cosmic sources from
  1. Noise
  2. RFI

We offset the 2nd drift by half of the beam spacing.
• Helps with position centroiding
• Evens out the gain scalloping

We conduct the 2nd pass 3-9 months after the first.
• Cosmic sources will have shifted in frequency due to the Earth’s motion around the Sun, but terrestrial ones won’t have.
• Some interference comes and goes.
Final coverage for 2 pass strategy

• For the 2nd pass, Beam 0, which has higher gain than the others, is offset by 7.3 arcmin from its 1st pass position.

• Some smoothing of gain scalloping.

• 2-pass sampling thus at 1.05 arcmin

• 2nd pass occurs 3-9 months after the 1st pass (vs. RFI)

2-pass beam layout
A Drift scan, before bandpass correction (bpd)
After BPD

A Drift scan, after bandpass correction (bpd)
Each grid field is 2.4 x 2.4 degrees, spaced every 8 min of RA, and 2 deg in Decl. 4 subgrids are created, each of 1024 spectral channels.
Galflux and GalCat
Stacking spectra

Silvia Fabello, PhD (MPA)
Fabello+ (2010) MNRAS 411, 993
ALFALFA Survey 2005-12

- Commensal with TOGS HI
- Does not compete with galactic plane surveys

High galactic latitude sky visible from AO

Supergalactic plane

Virgo cluster

Leo Group
ALFALFA status 2013

- The legacy drift scan observations are completed (!)
- > 85% of the drift scans are Level I processed (bandpass subtraction, calibration, flagging; ready for gridding)
- >58% of the survey is gridded and catalogued (40% published)
- Many followup programs:
  - LBW confirmation of low SNR sources
  - SHIELD (Extremely Low-Mass Dwarfs)
  - HIghMass (HI-rich, high HI mass galaxies)
  - Hunt for Local Group minihalos
  - UAT groups project
  - +....
Scavenger Hunt #1

http://egg.astro.cornell.edu/alfalfa/ugradteam/hunt10/hunt1_13.htm

- Think about using Arecibo for ALFALFA
  - More on LBW after lunch
- Start thinking about what we can learn about galaxies
- Please: no cheating by return attendees!

http://egg.astro.cornell.edu/alfalfa
http://www.naic.edu/~a2010/galaxy_a2010.html
Team website: A2010 + (the password)
Scavenger Hunt #1

http://egg.astro.cornell.edu/alfalfa/ugradteam/hunt13/hunt1_13.htm

To run IDL here at the workshop

• ssh -X alfalfa@fusion00.naic.edu
• (The password) (ask Tom where this comes from!)
• cd /share/alfalfa/teama
• idl
• @corinit
• @lbwinit
So, enough talk; let’s eat...!