

Introduction to Arecibo, ALFA and ALFALFA

Martha Haynes UAT13 13.01.14

FA

ALFALFA: A Census of Gas-bearing Galaxies

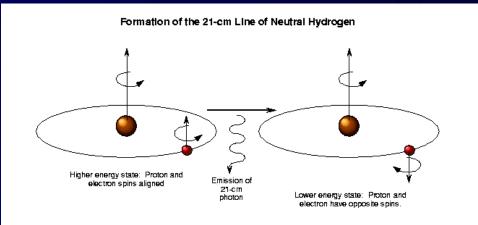
- A galaxy is a gravitationally bound object that consists of billions (and billions) of stars, gas clouds (of varying temperature and density = interstellar medium), dust clouds (mixed with the gas), and (so it seems), 90% dark matter.
- Optical surveys, like the Sloan Digital Sky Survey, detect the stellar component of galaxies.
- ALFALFA is designed to detect the cool (not hot; not cold) atomic gas in and near galaxies.
- ALFALFA is a blind survey; we observe the whole area of sky, whether or not we think/know there is an optical galaxy there.
- ALFALFA is a spectroscopic survey; not only do we detect the HI line flux, we also measure its frequency (velocity) and the width of the HI line (a measure of rotational velocity).

 $= 0.045 + / -0.004 \sim (1/6) \Omega_{matter}$ $\Omega_{baryons}$

Coronal + diffuse IG gas~0.037 Stars ~ 0.003 Cluster IGM~0.002

Cold Gas ~ 0.0008 (~2/3 atomic)

HI: a different view

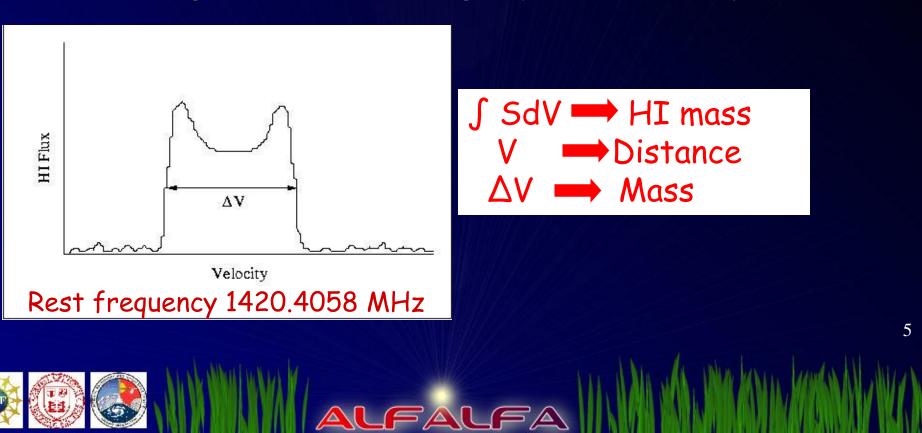

HI contributes a piffling fraction of cosmic matter in baryons

> *Fukugita & Peebles* 2004

21-cm Line of Atomic HI

Through Hydrogen maser measurements the frequency is: 1,420,405,751.7667 ± 0.0010 Hz Energy hc/A ~ 5 x 10⁻⁶ eV Compared to energy of a visible light photon which is about 2 eV.

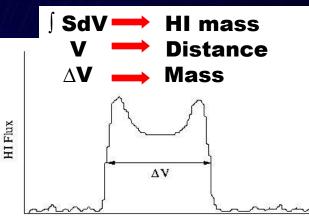
About 4.4% of the visible matter in our galaxy is HI =>4.8 \times 10⁹ M_o.


The fraction of interstellar space filled with HI clouds is 20% to 90%.

- In the MW there are some 10^{66.5} HI atoms;
- At the rate A_{10} , about 10^{52} atoms per sec would emit a photon.
- In reality, the transition probability is 10^5 times larger than A_{10}
- Hence the galactic HI emission is very easily detectable.

HI emission from galaxies

- Under most circumstances, the total H I mass can be derived from the integrated line profile; that is, the flux (integrated over all frequencies where there is signal) is proportional to the number of hydrogen atoms.
- The frequency (velocity) spread of the line reflects the velocities of the gas atoms, not quantum mechanics => hence the width of the line tells about the motions of the gas (rotation within the galaxy or turbulence, expansion, etc)

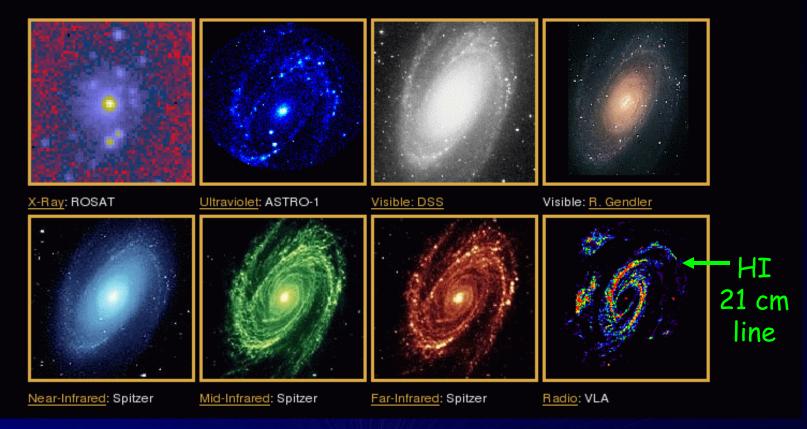


Clues from the HI line

- Redshifts (=> distances via Hubble's Law)
- HI mass and distribution (for extended objects)
 - Normal, star-forming disks
 - Low mass, LSB dwarfs
 - Potential for future star formation (HI content)
 - HI deficiency in clusters
 - History of tidal events
- Rotational velocities
 - Dark matter
 - Redshift-independent distances via Tully-Fisher relation
- HI absorption: optical depth
 - Link to Ly-a absorbers
 - Fundamental constant evolution

Velocity

HI: The fuel for star formation


M81 - Spiral Galaxy (Type Sb)

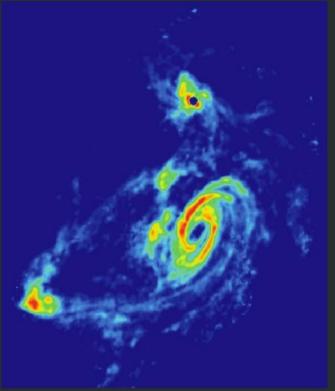
Distance: 12,000,000 light-years (3.7 Mpc)

Image Size = 14 x 14 arcmin

Visual Magnitude = 6.9

Statutes.

http://coolcosmos.ipac.caltech.edu/cosmic_classroom/multiwavelength_astronomy/multiwavelength_museum/m81.html


In some cases, the HI reveals interaction where the optical does not: M81/M82 system

TIDAL INTERACTIONS IN M81 GROUP

Stellar Light Distribution

21 cm HI Distribution

Credit: NRAO, Yun et al.

HI: Probing Dark Matter

NGC 5055 : Optical

ALFALFA

HI: Probing Dark Matter

NGC 5055 Optical (left); HI (right) Tom Osterloo

FA

The HI 21 cm line @ 1.42 GHz

HI: Why do we care ?

- Easy to detect, simply physics -> cold gas mass
- Good index of SF fertility → future SF
- Comparative HI content => HI deficiency
- Excellent tracer of host dynamics -> dark matter
- Useful Cosmology tool
 TF relation, HIMF, BAO
- Interaction/tidal/merger tracer
- Can be dominant baryon form in low mass galaxies
- ALFALFA: A census of HI in the local universe

ALFALFA Science Goals

- 1. Census of HI in the Local Universe over cosmologically significant volume
- 2. Determination of the faint end of the HI Mass Function and the abundance of low mass gas rich halos
- 3. Environmental variation in the HI Mass Function
- 4. Blind survey for HI tidal remnants
- 5. Determination of the HI Diameter Function
- 6. The low HI column density environment of galaxies
- 7. The nature of HVC's around the MW (and beyond?)
- 8. HI absorbers and the link to Ly α absorbers
- 9. OH Megamasers at intermediate redshift 0.16 < z < 0.25

Comparison of blind HI surveys

Survey	Beam arcmin	Area sq. deg. (m	rms 1Jy @ 18 km	min M _{HI} /s) @ 10 Mpc	N_{det}	t _s sec	#/sqd	
AHISS	3.3	13 430	0.7	2.0x10 ⁶ 9.6x10 ⁶	65 265	var 12	5 0.6	
HIPASS	15.	30,000	13	3.6x10 ⁷	5300	460	0.18	
J-Virgo	12	32	4	1.1×10 ⁷	31	3500	1	
HIDEEP	15	32	3.2	8.8×10 ⁶	129	9000	4	
AGES7448	3.5	35	0.6	1.6×10 ⁶	175	300	5	
ZOA10	3.5	138	5	1.2x10 ⁶	72	8	0.5	
ALFALFA	3.5	7,000	1.7	4.4×10 ⁶	>30,000	0 40	6	

ALFALFA is ~ 1 order of magnitude more sensitive than HIPASS with 4X better angular resolution. Median cz for HIPASS ~ 2800 km/s For ALFALFA ~ 7800 km/s ALFALFA detects 29X the source density (number of sources per square degree) of HIPASS

ALFALFA: A 2nd generation HI survey

- In comparison with opt/IR, the HI view is largely immature
- HIMF based on only few thousand objects (HIPASS)

ALFALFA:

- Designed to explore the HI mass function over a cosmologically significant volume
 - Higher sensitivity than previous surveys
 - Higher spectral resolution => low mass halos
 - Higher angular resolution => most probable optical (stellar) counterparts
 - Deeper: 3X HIPASS median redshift => volume
 - Wider area than surveys (other than HIPASS) => nearby volumes for lowest M_{HI} => <u>cosmologically significant volume</u>

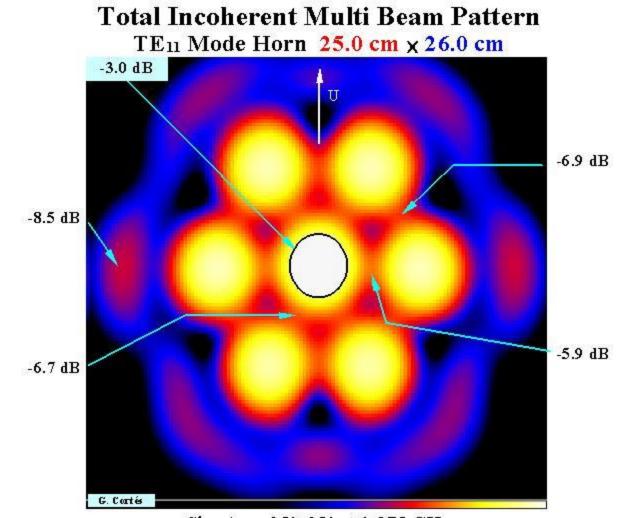
LFA

Arecibo Legacy Fast ALFA Survey

- One of several major surveys currently ongoing at Arecibo, exploiting its new multibeam capability
- An extragalactic spectral line survey (mainly HI)
- Covers 7000 sq deg of high galactic latitude sky
- 1345-1435 MHz (-2000 to +17500 km/s for HI line)
- 5 km/s resolution (100 MHz/4096 channels)
- 2-pass, drift mode (total int. time per beam ~ 40 sec)
- 1.5-2 mJy rms (per spectral resolution element)
- started Feb 4, 2005; completed Oct 26, 2012 (drift scans)
 - 4741.5 hours, 808 runs, 99 observers
- 41+4 refereed papers to date
- An "open collaboration": let's do science!

http://egg.astro.cornell.edu/alfalfa

Arecibo Legacy Fast ALFA Survey


Arecibo Legacy Fast ALFA Survey

- One of several major surveys currently ongoing at Arecibo, exploiting its new multibeam capability
- An extragalactic spectral line survey (mainly HI)
- Covers 7000 sq deg of high galactic latitude sky
- 1345-1435 MHz (-2000 to +17500 km/s for HI line)
- 5 km/s resolution (100 MHz/4096 channels)
- 2-pass, drift mode (total int. time per beam ~ 40 sec)
- 1.5-2 mJy rms (per spectral resolution element)
- started Feb 4, 2005; completed Oct 26, 2012 (drift scans)
 - 4741.5 hours, 808 runs, 99 observers
- 41+4 refereed papers to date
- An "open collaboration": let's do science!

http://egg.astro.cornell.edu/alfalfa

ALFA: Arecibo L-band Feed Array

Sky Area 25'x25' at 1.375 GHz

FA

18

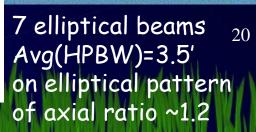
Sec. and

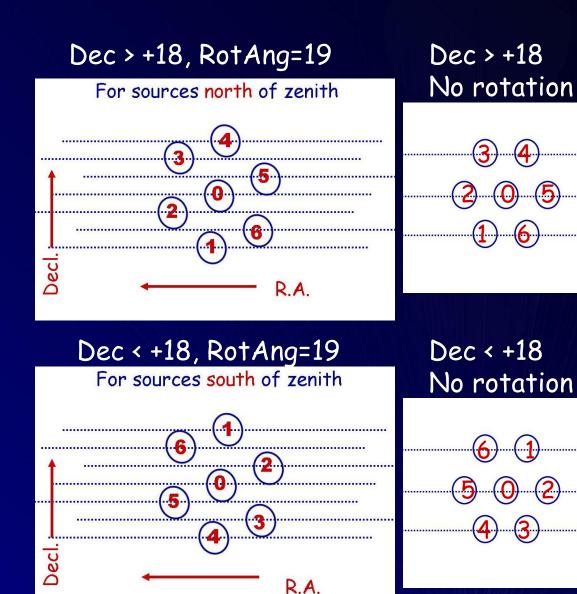
It is a radio "camera"

Arecibo L-band Feed Array

 Δ

FALFA


-5.9 dB


TT

-3.0 dB

8.5 dB

Array rotation

The individual feed horns move along an elliptical ring oriented in Az, ZA.

Note: The beams are actually elliptical, NOT circular.

ALFA at 19°

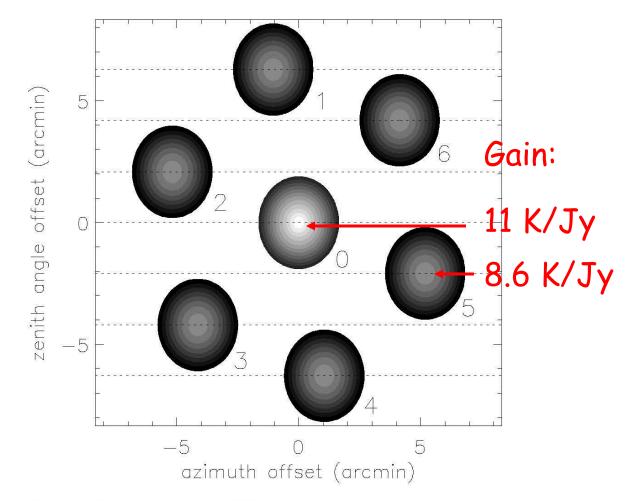
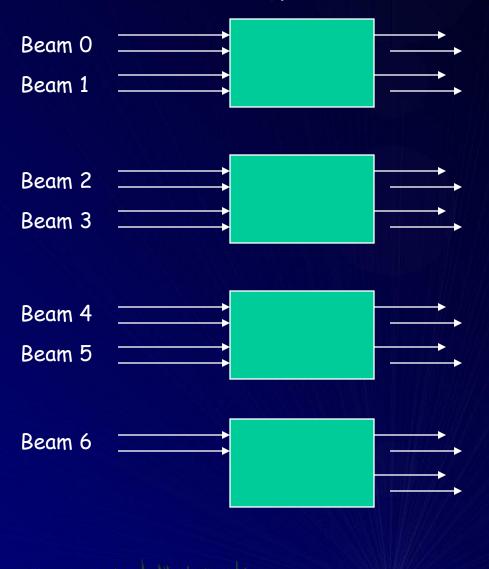



Fig. 2.— Sketch of the geometry of the ALFA footprint, with the array located along the local meridian and rotated by an angle of 19° about its axis. The outer boundary of each beam corresponds to the -3 dB level. The dashed horizontal lines represent the tracks at constant Declination of the seven ALFA beams, as data is acquired in drift mode.

Spectrometer setup for ALFALFA WAPP

ALFA spectra:

16 x 4096 frequency channels (2 not used)

7 beams X 2 polarizations/beam

100 MHz wide

Centered at 1385 MHz

So resolution is 100 MHz/4096 channels

Radio Frequency Interference

- Man-made signals are much stronger than cosmic ones!
- Some are always present; others come and go.
- Radars (e.g. FAA at San Juan airport) occur with some regular period (e.g. 12 sec)
- Some RFI is so strong that it "saturates" the front end.
- Some RFI can be avoided through coordination (Puntas Salinas)

We have to live with it (but we don't have to like it!).

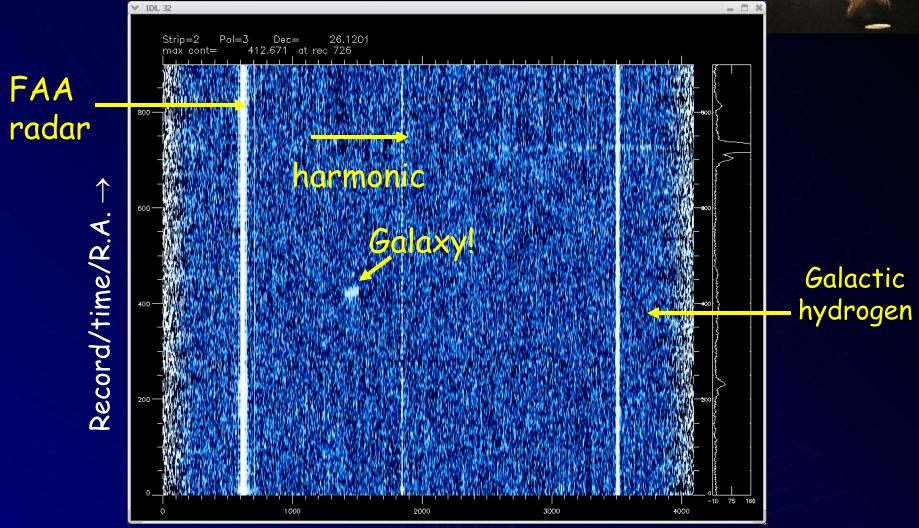
See: http://www.naic.edu/~a2010/rfi_common.htm

LEA

RFI List

				Mozilla Firefox	X				
<u>F</u> ile <u>E</u> dit <u>V</u>	/iew	Go	<u>B</u> ookn		0				
↓ • ↓ •	2	3	1	http://www.naic.edu/%7Ephil/rfi/rfilist.html#lband%20birdies					
User Record Viewer									
1241.75					*				
1244.6 1256.5	1.67	jan97	active Radar	Aerostat radar ballon in lajas, dual freq or quad freq modes. 160 usec per pulse, chirped. Rotation rate 11.59 secs. Blanks toward AO. (see radar info)					
1256.5			Katai	AO. (see <u>natar lints</u>)					
1270/1290	.2	febO2	active Radar	Remy Radar at the end of the runway .(fps20-93a). 12 sec rotation rate, single ipp of 2781. Runs in 1270 or 1290 mode (not simultaneously). (see <u>radar info</u>)					
1287.5/1299.84 1300,1399.83		janO1		Distomat birdies. Occur every 2 minutes for a few seconds. Az dependent.Distomats have a 27 Mhz clock. Data was measured in jan01 (before shielding work)					
1400 1411.52		apr02		Data was measured in jan01 (<u>before shielding work</u>) Data was remeasured in apr02 (<u>after some shielding work</u>).					
1412.5				The window was changed					
1330/1350	.2	jan97	active Radar	FAA airport radar.12 sec rotation, 5 ipps about 2.5 ms,5 usec pulse, 1350 then 1330 pulse sent each ipp. (radar info)					
1366.2/1382.66 1324/1340 1387.3/1371.0		feb01	Radar	Radars with 1.94 sec rotation rates. (<u>more info</u>). These radar were probably associated with military ship practices. Fast rotating radars are needed when objects move far within 1 rotation (planes near aircraft carriers,etc)					
1381.05	1	sep91	active	GPS L3 downlink. (more info)					
1388.55	.024	98		beeper harmonic (3rd of 462.85)					
1388.6	.024	93		beeper harmonic (3rd of 462.875) (borinquen beepers)					
1388.858 1417.495	<190 (hz)	may02		dome camera birides. part of a comb of 14.3185 Mhz. (<u>more info</u>).					
1390.8	.024	feb93		beeper harmonic (3rd of 463.6 (mr. beeper)					
1407	.3	apr01	fixed	tvChan20 arecibo. Drifted around with time. They were having trouble with their transmitter. (more info)					
1422.5				tvChan54 2nd harmonie					
1525-1545		augO3		Inmarsat stdBC ship,portable earch downlinks Inmarsat stdM ship downlinks					
Done					¥				

ALFALFA



3

25

- Adams

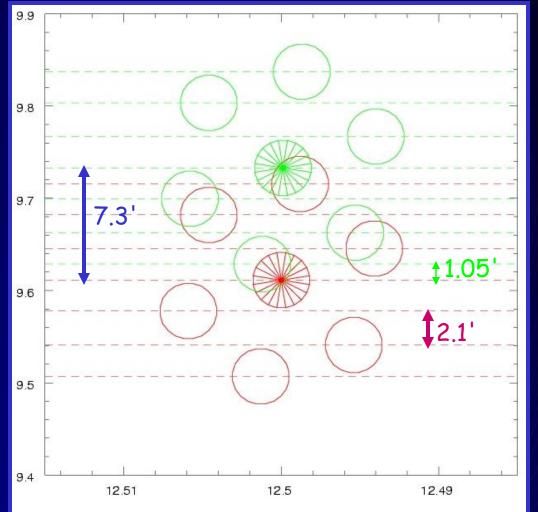
RFI is ugly

Channel number/frequency \rightarrow

FA

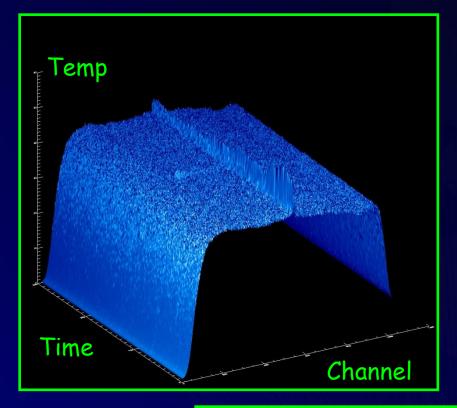
Two-pass strategy

We want to drift across each stop on the sky TWICE


- Double integration time
- Helps to discriminate cosmic sources from
 - 1. Noise
 - 2. RFI

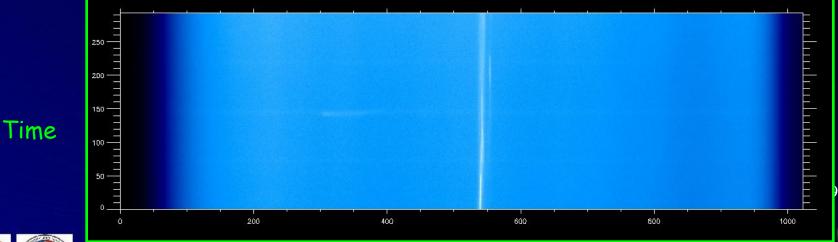
We offset the 2nd drift by half of the beam spacing.

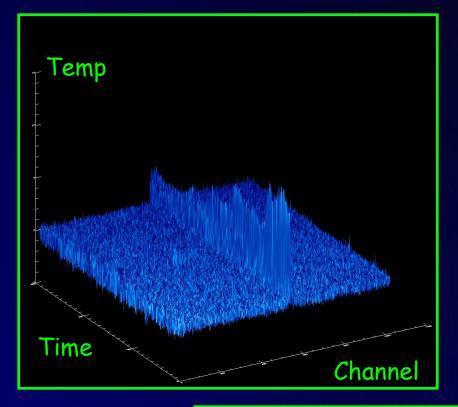
- Helps with position centroiding
- Evens out the gain scalloping
- We conduct the 2nd pass 3-9 months after the first.
 - Cosmic sources will have shifted in frequency due to the Earth's motion around the Sun, but terrestrial ones won't have.
 - Some interference comes and goes.


2-pass beam layout

Final coverage for 2 pass strategy

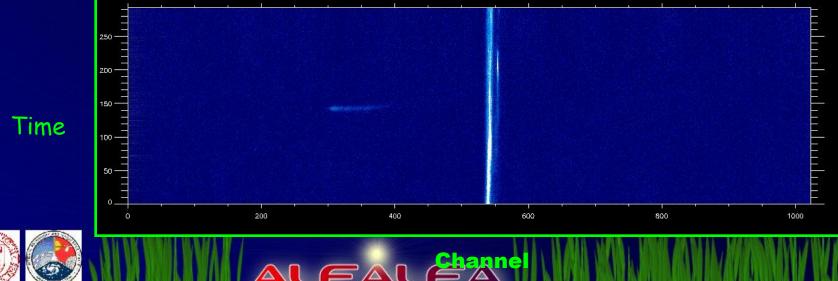
- For the 2nd pass, Beam O, which has higher gain than the others, is offset by 7.3 arcmin from its 1st pass position.
- Some smoothing of gain scalloping.
- 2-pass sampling thus at 1.05 arcmin
- 2nd pass occurs 3-9 months after the 1st pass (vs. RFI)

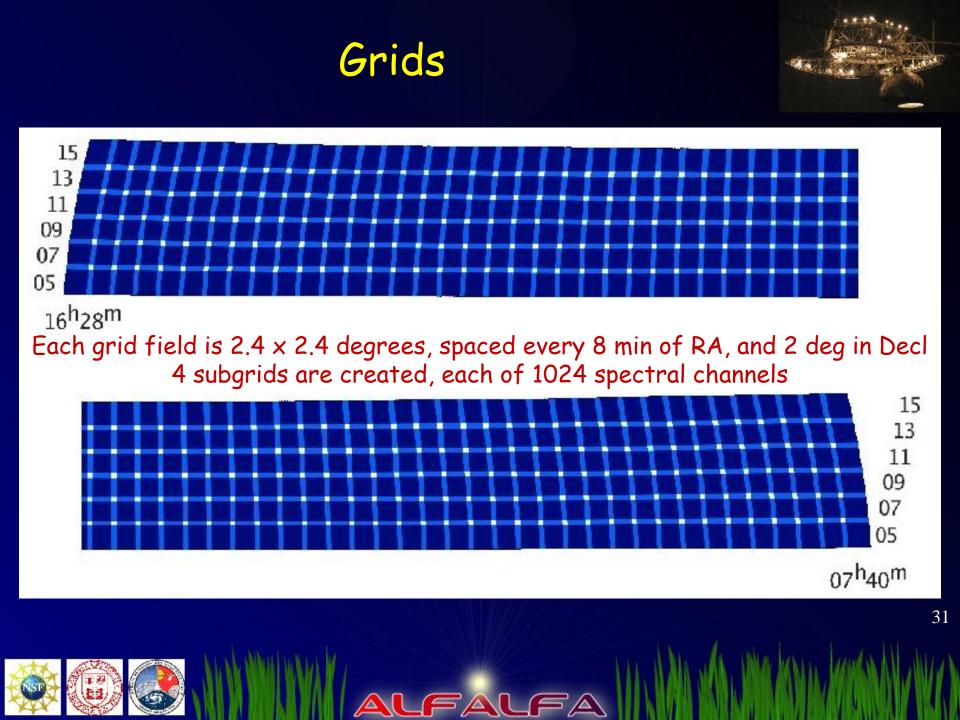


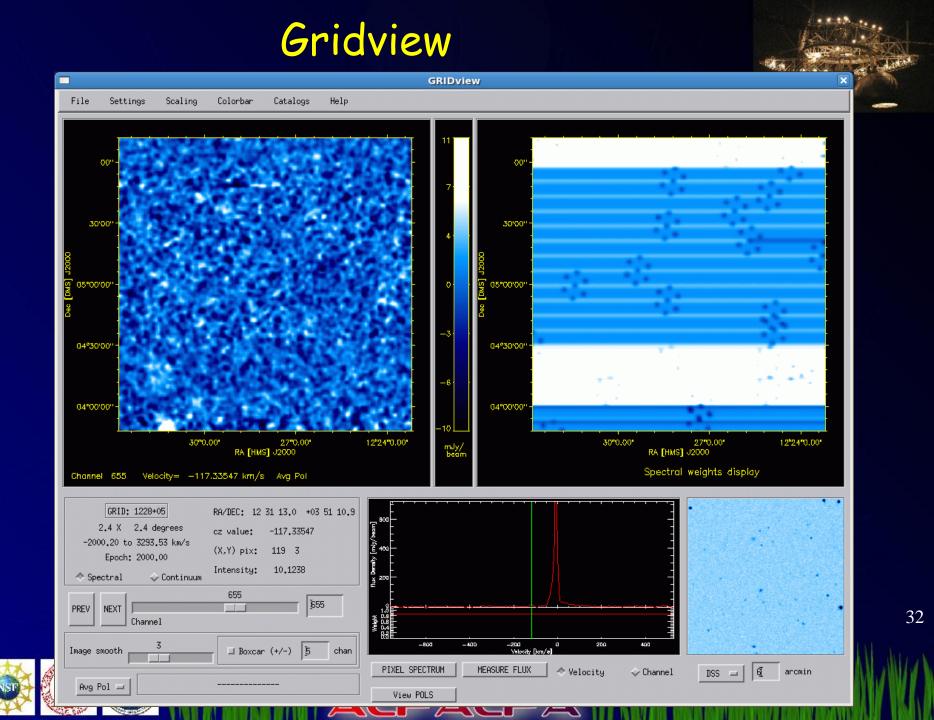


A Drift scan, before bandpass correction (bpd)

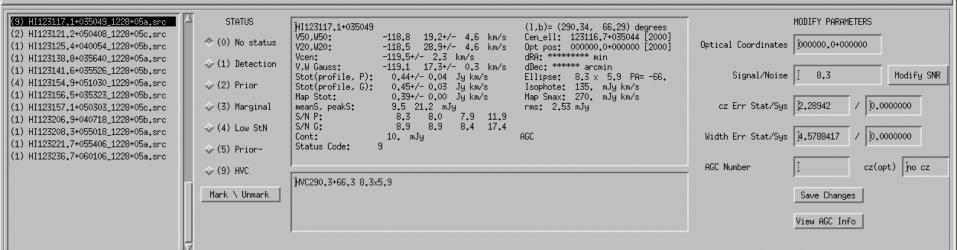
Channel

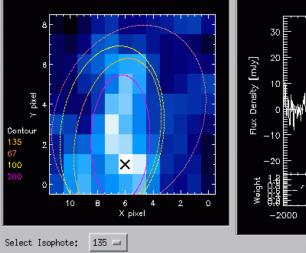


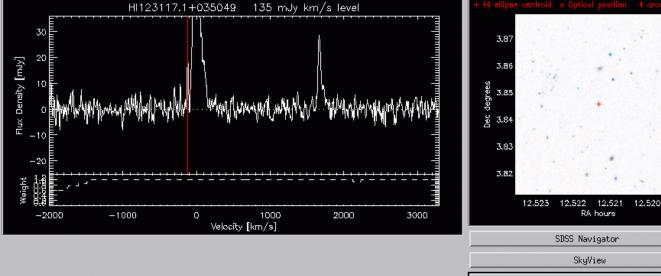




A Drift scan, after bandpass correction (bpd)

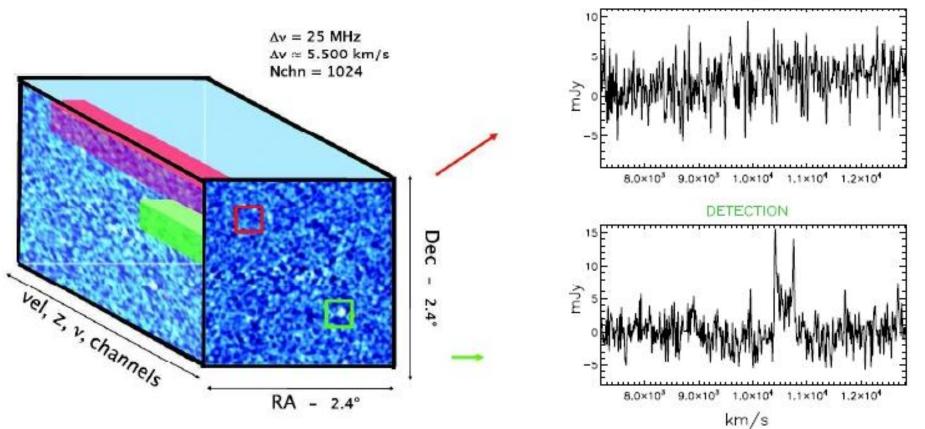





Galflux and GalCat

ALFALFA Catalog creator

File Imaging

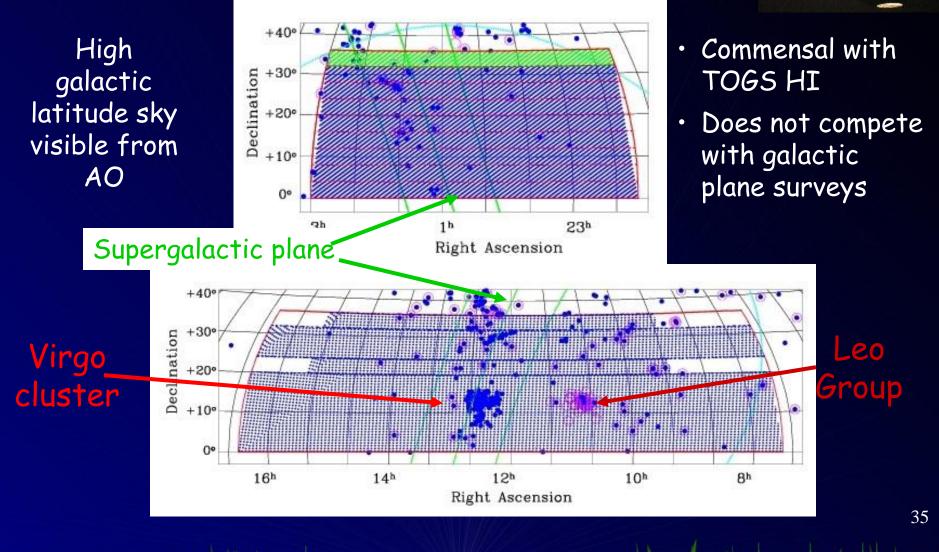


_ L*

NED

Stacking spectra

NON DETECTION



Silvia Fabello, PhD (MPA) Fabello+ (2010) MNRAS 411, 993

-A

ALFALFA Survey 2005-12

ALFALFA status 2013

- The legacy drift scan observations are completed (!)
- > 85% of the drift scans are Level I processed (bandpass subtraction, calibration, flagging; ready for gridding
- >58% of the survey is gridded and catalogued (40% published)
- Many followup programs:
 - LBW confirmation of low SNR sourcess
 - SHIELD (Extremely Low-Mass Dwarfs)
 - HIghMass (HI-rich, high HI mass galaxies)
 - Hunt for Local Group minihalos
 - UAT groups project
 - +....

Scavenger Hunt #1

http://egg.astro.cornell.edu/alfalfa/ugradteam/hunt10/hunt1_13.htm

- Think about using Arecibo for ALFALFA
 - More on LBW after lunch
- Start thinking about what we can learn about galaxies
- Please: no cheating by return attendees!

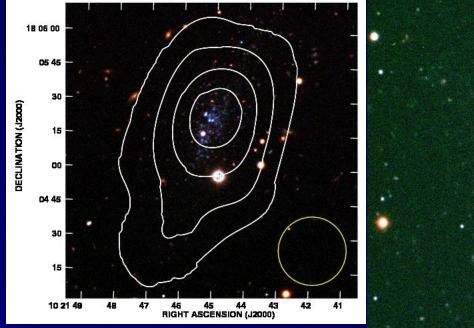
http://egg.astro.cornell.edu/alfalfa http://www.naic.edu/~a2010/galaxy_a2010.html Team website: A2010 + (the password)

Scavenger Hunt #1

http://egg.astro.cornell.edu/alfalfa/ugradteam/hunt13/hunt1_13.htm

To run IDL here at the workshop

- ssh -X alfalfa@fusion00.naic.edu
- (The password) (ask Tom where this comes from!)


FALFA

- cd /share/alfalfa/teama
- idl
- @corinit
- @lbwinit

So, enough talk; let's eat...!

FA

