Luke Leisman 2013 Undergraduate ALFALFA Workshop

The Local Universe

Acknowlegements

My thanks to Brian Kent, the original creator of this talk (I think)

 Also to Ann Martin and Greg Hallenbeck for their successive iterations and genius improvements

My Local Universe

http://archiehopeful.wordpress.com/2011/09/06/confession-of-a-regaliac/

Astronomers' Local Universe

http://en.wikipedia.org/wiki/File:Velocity-redshift.JPG

Astronomers' Local Universe What's in it?

- Galaxies
- Galaxy Clusters/groups
- Voids

- A brief tour
 - What's Alfalfa got to do with this?

What is a Galaxy?

The Wikipedia Definition: "A **galaxy** is a massive, gravitationally bound system consisting of stars, an interstellar medium of gas and dust, and dark matter." Various morphologies (spiral/elliptical) and sizes (dwarfs/giants)

What do Galaxies Look Like?

M81: X-Ray, UV, Visible, Visible, NIR, MIR, FIR, Radio

From the IPAC Multiwavelength Museum

Types of Galaxies: Spirals

- Thin disks
- Bars
- Central luminous bulge (and ratio to the brightness of the disk)
- Tightness of the spiral

M33 © IAC/RGO/Malin

Types of Galaxies: Ellipticals

- Ellipticals: look like smooth, featureless "blobs"
- Older (redder) stellar populations
- Tend to have little neutral gas (HI) – so ALFALFA doesn't see these!
 - More rare in the early Universe

487 in the Virgo Cluster

Types of Galaxies: Irregulars

 Irregulars: Many different properties, often because of interactions or other unusual events nearby.

NGC 1427A

mage of Sagittarius Dwarf Irregular Galaxy (SagDI

Types of Galaxies: Irregulars

 LMC and SMC are satellite galaxies of our own – disrupted by gravitational interaction with the Milky Way

LMC and SMC

Dwarf Galaxies

- Smaller size than giant galaxies
- Lower surface brightness
- Most common galaxies!

Sagittarius Dwarf

Groups of galaxies

- Galaxies can be gravitationally bound to each other, and undergo interactions and collisions.
- Separations across intergalactic distances range from 50 kpc up to 1 Mpc.
- ALFALFA science goals include studying the effects within the group environment –
 - What is HI mass function?
 - How do unseen HI clouds/starless galaxies effect dynamics?
 - Are there unseen tidal remnants or debris?
 - What are sizes of HI disks?

Clusters of Galaxies

- Around half the galaxies in the Universe are found in clusters or groups.
- Clusters have a higher density than "loose" groups

 brightest galaxies are S0s and ellipticals instead
 of spirals
- Abell Catalog contains 4073 rich clusters
- Gravity binds the members, as well as hot intracluster gas (seen in the X-ray)

Filaments and Voids

125 Mpc/h

The Local Group has about 45 members ranging from large spiral galaxies to small dwarf irregulars. Most are dwarf spheroidals.

• 13

12 .

(1) Milky Way (17) NGC 205 (2) Draco (18) M32 (19) Andromeda I (3) Ursa Minor (4) SMG (20) Andromeda II (5) LMG (21) Andromeda (M31) (6) Carina (22) M33 (7) Sextans (23) LGS 3 (8) Ursa Major (24) IC 1613 (25) NGC 6822 (9) Pegasus (10) Sculptor (26) Sextans A (27) Leo A (11) Fornax (12) Leo I (28) IC 10 (13) Leo II (29) DDO 210 (14) Maffei (30) Wolf-Lundmark-(15) NGC 185 Melotte (16) NGC 147 (31) IC 5152

28

15

10 million ly **The Virgo Supercluster** Virgo II Groups NGC 67<u>44</u> NGC 7582 Ī NGC 5128 local Group Sculptor Maffei M81 .eo l aroups NGC 1023NISI 2997 Dorado eo II Groups ornax Cluster idanus Cluster http://www.atlasoftheuniverse.com/virgo.html

rpowell

Virgo Cluster

cz ~ 1035 km/s

- Δv ~ 1000 km/s
- 1300 catalogued members
- Most galaxies are dwarf elliptical type

Fornax Galaxy Cluster

NGC 1380

NGC 1382

NGC 1381

NGC 1399 NGC 1379

NGC 1427A

NGC 1387

NGC 1404

NGC 1389

NGC 1365

Clusters and superclusters nearby

Astronomy: Roen Kelly; after M. Hudson

Distribution of Galaxies

~450,000 galaxies (SDSS)

ALFALFA View of the Local Universe

ALFALFA View of the Local Universe

Summary

The Local Universe:

- Contains Galaxies, Galaxy Clusters, and Voids
- Consists of The Milky Way and it's satellites, the Local Group, the Virgo Supercluster, and beyond

Alfalfa:

- Maps the local universe
- Discovers new members
- Studies its properties

Beyond OurNeighborhood • The Universe is expanding! $CZ = H_0 d$

A sim ple calculation: Redshift

$$z = \frac{\lambda_{obs} - \lambda_0}{\lambda_0} = \frac{f_0 - f_{obs}}{f_{obs}}$$

Measure the shift in a spectral line – f0 is the rest frequency ($\lambda 0$ the rest wavelength)

Extragalactic objects often identified by their *cz* measurement. ALFALFA covers cz = -2000 to 18000 km/s (out to ~ 250 Mpc) However, there are other factors to take into account in the local Universe – peculiar velocities! Deviations can be quite large depending on the galaxy, and whether it is part of a group or a field galaxy

M66 Group: The Leo Triplet

M66 Group: The Leo Triplet

Our Neighborhood: The Local Group (solid)

D istances to nearby galaxies

