

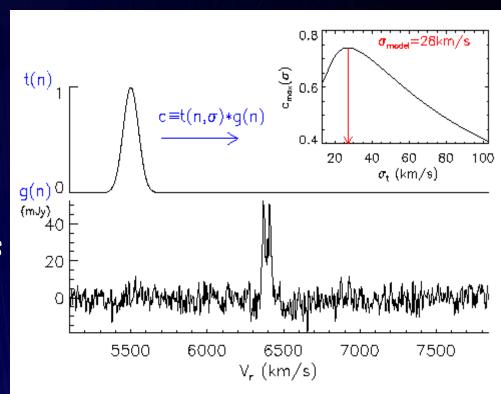
Introduction to LBW for ALFALFA followup

Martha Haynes UAT12 12.01.16

ALFALFA source codes

ALFALFA HI detections are coded according to:

Code 1	High quality sources, typically with S/N > 6.5
Code 2	Sources of lower S/N which are coincident with a probable OC of the same redshift (known from another source) => the "priors"
Code 3	Low S/N sources without identifiable OC
Code 4	Low S/N sources with a possible OC of unknown redshift
Code 5	Corresponding to Code 2, but of such low S/N or possible RFI contamination that they are untrustworthy
Code 6	Like OH megamasers at 0.16 < cz < 0.24

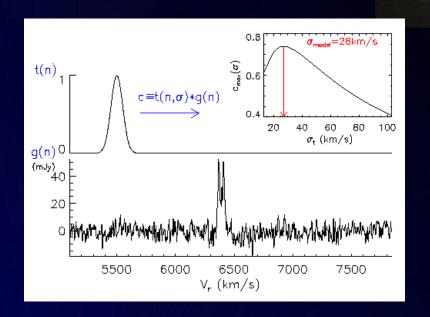


Signal Extractor -- Introduction

- The signals are extracted by cross-correlations of a template with the spectra. => "matched-filter algorithm"
- More sensitive than peakfinding algorithms.
- Sensitive to total flux, not only peak flux
- Especially important for low mass systems
- Using FFT's, cross-correlations are computationally fast

Saintonge 2007 AJ 133, 2087

Slide: Amelie Saintonge



Signal Extractor -- Application(2)

Saintonge 2007 AJ 133, 2087

The process is:

- Repeat for a range of widths of the template
 - e.g. 10 km/s 600km/s
- Choose the width for which the convolution is maximised --> position of the signal
- Calculate the amplitude of the signal from the width

ALFALFA Catalog creator

Modify SNR

0.0000000

0.0000000

cz(opt) | 1496

(1) HI152947.8+260508_1532+25a.src

Imaging

File

(2) HI152953.5+041105 1532+05c.src (1) HI152956,8+072646_1532+07d,src

(1) HI153009.3+252804_1532+25c.src

(1) HI153020.8+074941 1532+07c.src

(3) HI153022,7+102807_1532+11b,src

(1) HI153023.9+271608_1532+27a.src

(1) HI153031,3+065630_1532+07b,src (1) HI153031,9+144209_1532+15b,src

(1) HI153032.8+251550_1532+25b.src (1) HI153034.0+050850_1532+05c.src

(1) HI153035,0+264447_1532+27b,src (1) HI153037.2+272859_1532+27c.src

(1) HI153000.8+125922_1532+13b.src ♠ (1) Detection (2) HI153003.0+261846_1532+27d.src (4) HI153004.8+083711_1532+09c.src

(2) Prior (3) Marginal

(4) HI153009.5+073415_1532+07d.src (1) HI153011.6+055013_1532+05b.src (5) HI153013.3+240023_1532+25d.src

(5) Prior-

STATUS

→ (0) No status

Map Stot:

S/N P:

S/N G:

Cont:

40

20

-20

-2000

ŠDSS ObjID: 587739382067167453

extinct: u= 0.27

petroMag(err): u= 17,91(0,09)

-1000

petroR50_r: 6.11 petroR90_r: 13.46 expAB_r: 0.33

Flux Density [mJy]

meanS, peakS:

Status Code:

(9) HVC

Mark \ Unmark

HI152947.8+260508 V50.W50: 2019.5 68.2+/- 5.5 km/s V20.W20: 2019.8 107.4+/- 5.5 km/s 2016,2+/- 2.7 km/s Vcent V.W Gauss: 0.0+/- 0.0 km/s 0.0 Stot(profile, P): 2.02+/- 0.07 Jy km/s Stot(profile, G): 0.00+/- 0.00 Jy km/s

1.92+/- 0.00 Jy km/s 11.7 27.6 mJy 23.1 12.4 11.7 0.0 0.0 0.0 0.0 13. mJy

HI152947.8+260508

0

9= 0.20

AGC727130

879 mJy km/s level

rms: 2.35 mJy

(1,b)= (40,49, 54,74) degrees

Cen ell: 152949.3+260515 [2000]

Opt pos: 152948,2+260516 [2000]

Ellipse: 4.0 x 3.5 PA= -18.

Isophote: 880, mJy km/s

Map Smax: 1759. mJy km/s

dRA: -1.07685 sec

dDec: 1.33 arcsec

cz Err Stat/Sys Width Err Stat/Sys AGC Number

Save Changes

Optical Coordinates

Signal/Noise

SDSS data:

727130

Acquire SDSS

View AGC Info

26.07

26.06

MODIFY PARAMETERS

152948.2+260516

23.1

2.73550

5.4709949

15,499 15,498 15,497 15,496 15,495 RA hours

SDSS Navigator

SkyView

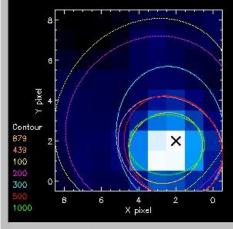
NED

2000

i = 0.11

3000

i= 16,65(0,04) z= 16,89(0,11)


1000

Velocity [km/s]

r = 0.14

specObjID: 609061544193425408

g= 17.06(0.02) r= 16.82(0.01)

Select Isophote:

879 =

Modify SNR

0.0000000

0.0000000

cz(opt) 10255

File Imaging

(1) HI153606.5+100300_1540+09c.src

(2) HI153607,3+250823_1532+25c,src

(2) HI153608,9+252713_1532+25c,src

(1) HI153609.1+054730_1532+05c.src

(1) Detection (1) HI153609,5+125056_1532+13d,src

(3) HI153614.7+153955_1532+15a.src √ (2) Prior (1) HI153618.3+054010_1532+05c.src

(3) HI153618.3+090430 1532+09b.src

(2) HI153621.7+120758_1540+13d.src

→ (4) Low StN

√ (5) Prior-

STATUS

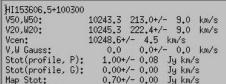
→ (0) No status

√ (9) HVC

Mark \ Unmark

(1) HI153645,9+075008_1532+09b,src (2) HI153646,1+074430_1532+07d,src (2) HI153647.1+252419_1532+25c.src

(5) HI153623.1+264000_1532+27c.src


(2) HI153628,6+121235_1532+13d,src

(4) HI153639,9+124212_1540+13c,src

(1) HI153641.4+090122_1540+09c.src

(1) HI153650,0+261027_1532+27c,src

(1) HI153650.8+035153_1540+05c.src (1) HI153651,2+050639_1540+05c,src

0.70+/- 0.00 Jy km/s meanS, peakS: 4.0 5.8 mJy S/N P: 7.0 2.1 12.3 0.0 0.0 0.0

S/N G: 0.0 Cont: 15. mJy Status Code:

(1,b)= (17.20, 47.67) degrees Cen_ell: 153606,6+100252 [2000] Opt pos: 153606,8+100248 [2000] dRA: 0.18605 sec dDec: -3.79 arcsec Ellipse: 4.3 x 3.8 PA= Isophote: 359. mJy km/s Map Smax: 719. mJy km/s rms: 2,20 mJy AGC715089

Width Err Stat/Sys AGC Number

Save Changes

View AGC Info

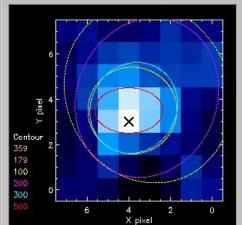
Optical Coordinates

Signal/Noise

cz Err Stat/Sys

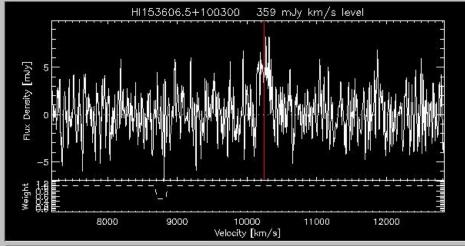
SDSS data: Checked no photo -

MODIFY PARAMETERS

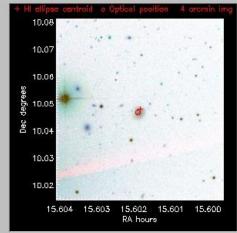

153606.8+100248

7.0

4.47854


3.9570789

715089



Select Isophote:

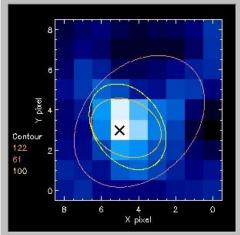
359 -

No SDSS information acquired for this file.

SDSS Navigator

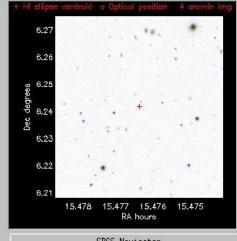
SkyView

NED



"Dark" galaxy candidate

ALFALFA Catalog creator File Imaging (1) HI152835.1+061437_1532+07a.src STATUS MODIFY PARAMETERS HI152835,1+061437 (1,b)= (10,99, 47,27) degrees (1) HI152835,9+092656_1524+09c,src V50.W50: 509.1 24.3+/- 15.9 km/s Cen_ell: 152834.9+061429 [2000] (0) No status 000000+0.000000 Optical Coordinates (1) HI152846,5+254445_1524+25c,src 50.6+/- 15.9 km/s V20, W20: 500.2 Opt pos: 000000,0+000000 [2000] dRA: ******* min Vcent 498.6+/- 8.0 km/s (1) HI152846.7+252139_1524+25c.src 🔷 (1) Detection V.W Gauss: dDec: ***** arcmin 0.0+/-0.0 km/s(1) HI152847.0+072154_1532+07d.src Signal/Noise 6.3 Modify SNR Stot(profile, P): 0.33+/- 0.05 Jy km/s Ellipse: 3.9 x 2.8 PA= 20. (1) HI152852,5+041111_1532+05d,src (2) Prior Stot(profile, G): 0.00+/- 0.00 Jy km/s Isophote: 123. mJy km/s (1) HI152853,4+074530_1532+07d,src Map Stot: 0.22+/- 0.00 Jy km/s Map Smax: 246. mJy km/s cz Err Stat/Sys 7.95085 00000000 (1) HI152855.8+131257_1532+13b.src (3) Marginal meanS, peakS: 3.8 9.9 mJy rms: 2,29 mJy S/N P: 6.3 5.5 4.3 (3) HI152857.0+135626 1532+15d.src S/N G: 0.0 0.0 0.0 0.0 (1) HI152857,3+050248_1532+05c,src 00000000 Cont: 9. mJy AGC258472 Width Err Stat/Sys 15,901690 (1) HI152901.0+072756_1532+07a.src Status Code: (5) Prior-(1) HI152902,7+252708_1524+25c,src AGC Number 258472 cz(opt) jno cz (1) HI152904,5+052518_1532+05c,src (9) HVC (1) HI152912.3+244400_1532+25c.src tantalizing, no oc (3) HI152916.0+075621_1532+09d.src Mark \ Unmark Save Changes SDSS data: Checked no photo -(2) HI152917,0+261441_1532+27d,src


(3) HI152919.0+101803_1532+11c.src

(2) HI152920.5+090457_1532+09c.src (3) HI152923,8+103041_1532+11d.src

Select Isophote:

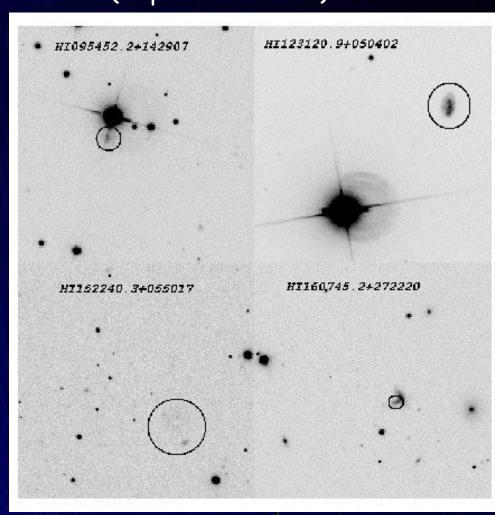
122 -

View AGC Info

SDSS Navigator SkyView

NED

Identifying Optical Counterparts

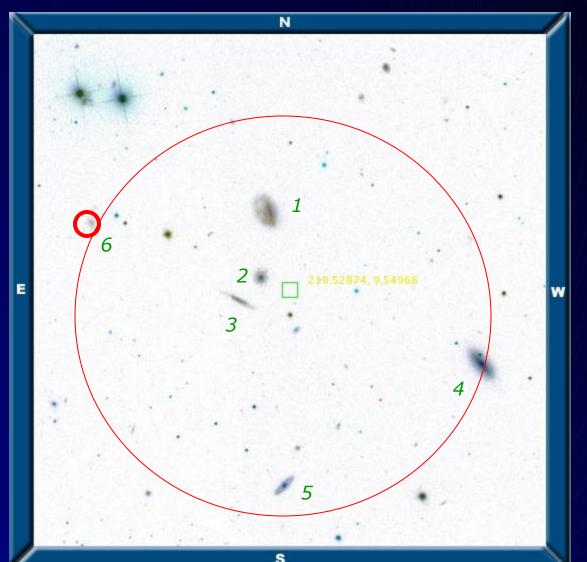

ALFALFA source centroids good to ~18" (depends on S/N)

ALFALFA catalogs include:

- the HI centroid position
- the position of the most probable OC
- OC's SDSS PhotoObjID and SpecObjID (where applicable)

Of 15855 sources in a.40:

- 1013 have no OC
- 844 of those could be HVCs (or LG minihalos)
- 199 (<2%) extragalactic
- Of those, <50 are "isolated"



ALFALFA advantage for finding the OC

Centroiding accuracy goes roughly as HPFW(PSF)/(S/N)

Suppose HIPASS detects a source at S/N~6 near 3000 km/s in this field. The position error box will have a radius of ~2.5′.

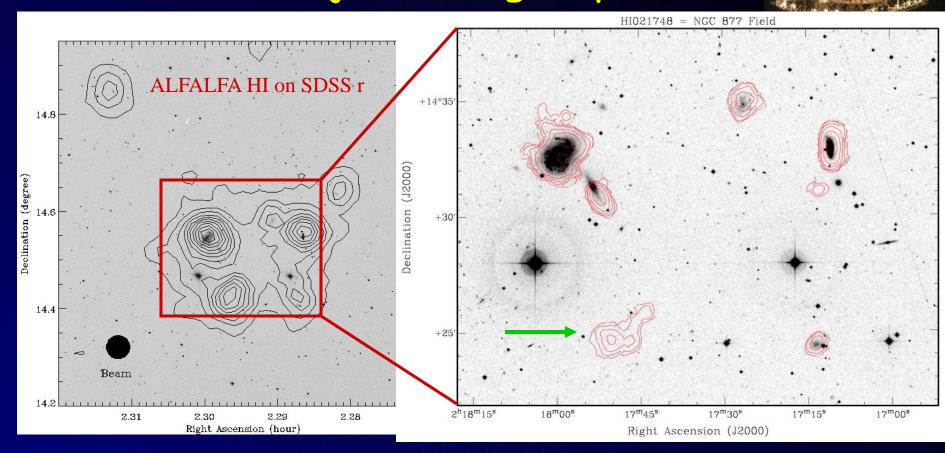
The opt counterpart could be gal #1, 2, 3, 4, 5 or 6.

ALFALFA will detect the same source with S/N~50

and the Arecibo beam is $\frac{1}{4}$ as wide as the Parkes one

→ The same source will have an ALFALFA position error of ~ 0.1'

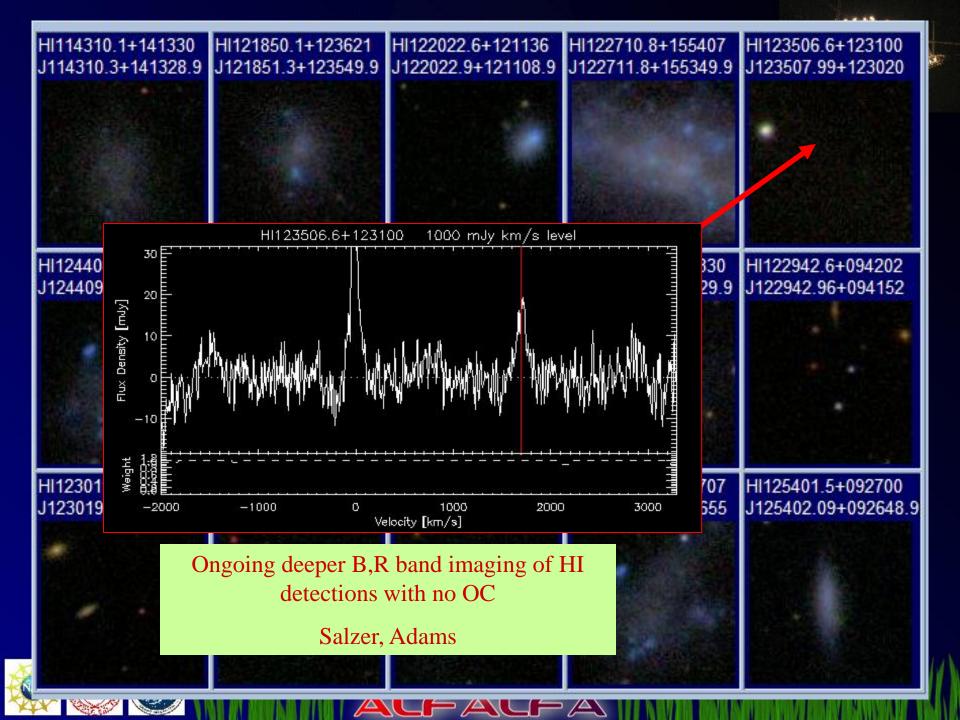
Dark galaxies



- In agreement with previous results, ALFALFA finds that fewer that 2% of (clearly extragalactic) HI sources cannot be identified with an optical counterpart.
- The majority of objects without OC's are found near to galaxies with similar redshifts.
- There are few interesting cases to be confirmed (work in progress).

"Dark" object in a group

HI peak with no optical/marginal UV: almost dark?


MH, RG (CU), Cannon (Macalester), Salzer (Indiana)

OH Megamasers: OHMs

- Arise in interacting/merging galaxy systems.
 - When galaxies merge, gas clouds close to their nuclei are shocked and heated by the collision, and the emission from certain molecules especially OH is strongly amplified.
- Since this stimulated emission is like the more familiar laser but occurs in the microwave region of the electromagnetic spectrum, it is called a "maser".
- When galaxies collide, the emission is millions of times stronger than in normal galaxies, hence the term "megamaser".
- Such objects are also typically (ultra) luminous in the far-infrared.

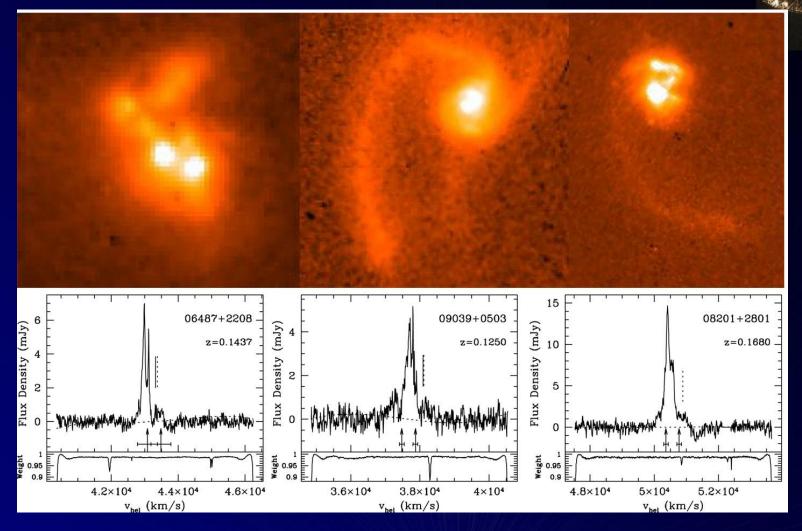
Ultraluminous Infrared Galaxy Arp 220 HST • N

HST • NICMOS

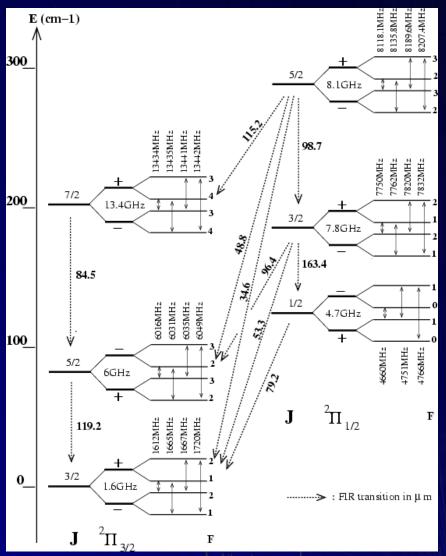
PRC97-17 • ST Scl OPO • June 9, 1997

R. Thompson (University of Arizona),

N. Scoville (California Institute of Technology) and NASA



18 cm OHMs



18 cm OH lines

- First molecular lines detected in radio.
- 18 cm lines formed by "lambda doubling" hyperfine structure
- 1612, 1665, 1667 and 1720 MHz

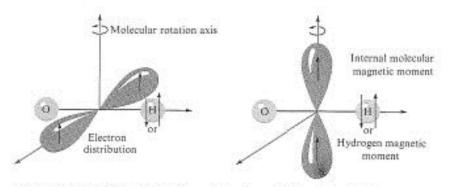
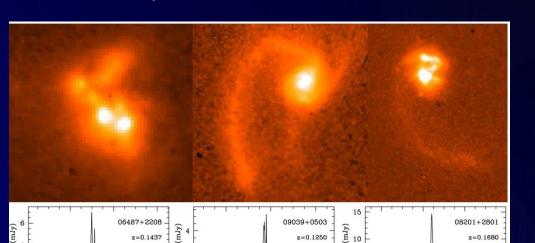


Fig. 8.2 The two different orientations of the electron distribution in the OH molecule leading to Λ-doubling.

Pacholczyk, Radio Astrophysics



Redshifted 18 cm OHMs in ALFALFA

- $f_5 = 1665.4018$
- $f_7 = 1667.3590$ In OHMs, $S(f_7) > S(f_5)$

$$f_{obs} = f_{rest} / (1+z)$$

ALFALFA: 1340-1430 MHz, corresponding, for OH, to 0.166 < z < 0.244

- Emission at f > 1422 MHz (blueshifted if HI)
- Emission associated with OC in 0.1666 < cz < 0.244
- Emission with no OC

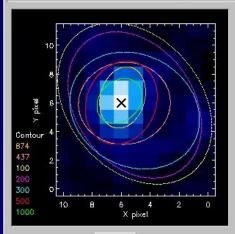
OHM candidates in a.40

AGC	OHM Coords (J2000) (hh mm ss.s+dd mm ss)	Opt. Coords (J2000) (hh mm ss.s+dd mm ss) (3)	Z _{opt} (4)	ZOH (5)	$\frac{cz_{21}}{(\text{km s}^{-1})}$ (6)	F_{OH} (Jy km s ⁻¹) (7)	S/N (8)	rms (mJy) (9)
(1)	(2)							
102708	000337.0+253215	000336.1+253204		0.169	-1335	0.91	5.7	2.33
102850	002958.8+305739	002958.2+305832		0.172	-596	0.46	6.7	2.09
181310	082311.7+275157	082312.7+275138	0.16783	0.168	-1551	2.17	15.9	2.18
228040	124540.5+070337	124545.7+070347		0.172	-624	0.33	5.1	2.11

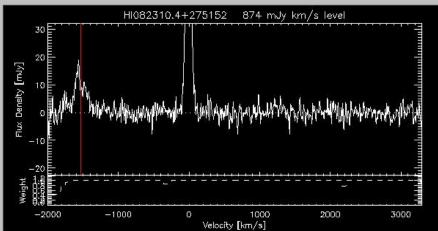
AGC 181310:

- Previously discovered OHM by Darling & Giovanelli (2001)
- Coincides with SDSS
 J083212.61+275139.8 at
 z=0.167830
- Also IRAS 08201+2801 and 5C 07.206

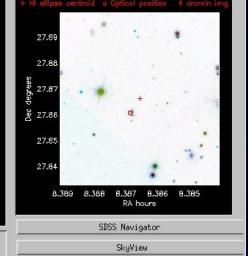
We need to confirm the others, and a few more low SNR sources.



AGC 181310: confirmed OHM



ALFALFA Catalog creator Imaging (1) HI082310.4+275152 0820+27a.src STATUS MODIFY PARAMETERS HI082310.4+275152 (1,b)= (195,30, 31,31) degrees (4) HI082312.2+040114_0820+05c.src V50,W50: -1515.7 193.5+/- 26.2 km/s Cen_ell: 082311.7+275157 [2000] (0) No status Optical Coordinates | 082312.7+275138 (9) HI082316,6+280500_0820+27a,src V20.W20: -1491.5 290.6+/- 26.2 km/s Opt pos: 082312.7+275138 [2000] -1534.0+/- 13.1 km/s dRA: 1.02306 sec (1) HI082318.0+273035_0820+27b.src Vcen: (1) Detection V,W Gauss: 0.0 0.0+/- 0.0 km/s dDec: -19.48 arcsec (1) HI082323.9+244012_0820+25b.src 15,9 2.17+/- 0.07 Jy km/s Signal/Noise Modify SNR Stot(profile, P): Ellipse: 4.3 x 3.1 PA= -75. (1) HI082327.6+092410_0820+09c.src (2) Prior Isophote: 875. mJy km/s Stot(profile, G): 0.00+/- 0.00 Jy km/s (2) HI082327,8+251745_0820+25d,src 1.69+/- 0.00 Jy km/s Map Smax: 1749. mJy km/s Map Stot: 0.0000000 cz Err Stat/Sys | 13.1000 (3) Marginal meanS, peakS: 9.2 18.9 mJy rms: 2,18 mJy (1) HI082328,1+270816_0820+27b,src S/N P: 15.9 5.1 8,6 29,0 (1) HI082329.1+150918_0820+15a.src S/N G: √ (4) Low StN 0.0 0.0 0.0 (1) HI082330.6+100300_0820+09b.src 0.0000000 23. mJy AGC181310 Width Err Stat/Sys 26,200068 Cont: (3) HI082333,3+150300_0820+15b,src Status Code: (5) Prior-(1) HI082336.3+250100 0820+25b.src 181310 cz(opt) 50215 AGC Number (9) HI082337.4+280010_0820+27a.src (9) HVC (1) HI082341,5+035346_0820+05a,src a clear, undisputable OHM, w/oc of matching z (1) HI082350,9+095100_0828+09c,src Mark \ Unmark Save Changes SDSS data: Checked no photo -(1) HI082351.3+144525_0820+15a.src cz(HI) = -1518 km/s(1) HI082352.7+280610_0820+27d.src



(1) HI082356,5+113334_0820+11c,src (2) HI082358,2+040952 0828+05c,src

Select Isophote:

No SDSS information acquired for this file.

NED

View AGC Info

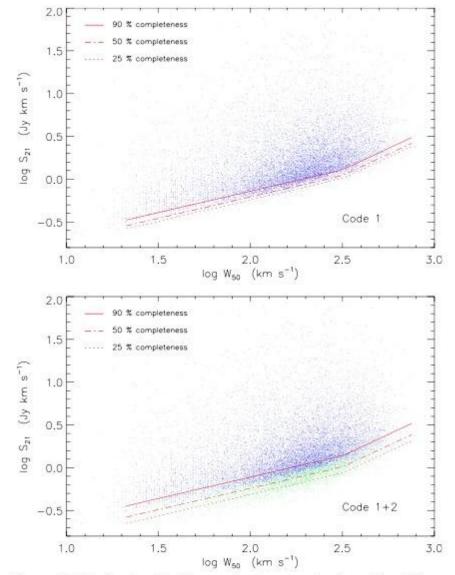
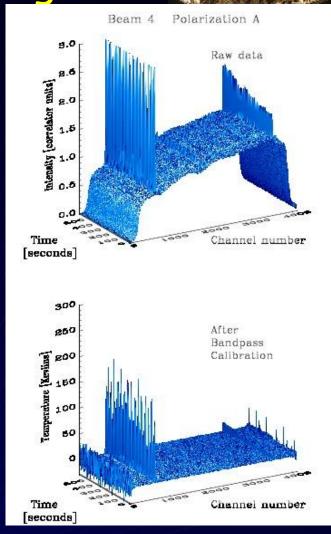


Figure 12. Distribution of α .40 extragalactic sources in the profile width vs. integrated flux density ($\log W_{50} - \log S_{21}$) plane. The upper panel shows the distribution of Code 1 detections only, while the lower panel shows the same for the whole α .40 catalog, including Code 1 (blue symbols) and Code 2 (green symbols) detections. In both panels, the solid red line corresponds to the 90% completeness limit, while the red dash-dotted line corresponds to the 50% ("sensitivity limit") and the red dotted line to the 25% ("detection limit") completeness limits. See Section 6 for the analytical expressions for the plotted limits, as well as for an explanation of the derivation method.

ALFALFA sensitivity & completeness

- We want to integrate longer on the low S/N sources.
- Even on high S/N sources, we want to verify they are real.
- Point at OC if there is one or the HI centroid if not "Targeted observations"
- LBW has a single horn ("pixel") but higher gain and lower T_{sys} than ALFA


Position-switched observing

The signals we are trying to take are billions of times weaker than the radio noise contributed by the receiver, electronics, antenna, cosmic microwave background and the sky overall.

Somehow, we have to subtract off all those unwanted contributions to find our signal.

We assume that a random position in the sky does not contain an HI line source at the exact same velocity as our target source.

We observe such a position, but track it over the exact same Az, ZA as our observations of the target source. => ON-OFF pair

Estimating how long we integrate

The radiometer equation for our observations

$$S_{\rm rms} = \frac{(T_{\rm sys}/G)}{\sqrt{2\Delta f_{\rm ch}t_s f_t}},$$

For LBW, T~ 30K G~11 K/Jy

 Δf : is the bandwidth per channel

t_s: is the effective integration time, in secs

f_t: accounts for the degree of smoothing, the technique applied for bandpass subtraction, clipping losses, etc.

The factor of 2 under the square root comes from the fact that we average the two independent polarizations.

See Giovanelli + 2005, AJ 130, 2598

A2669 LBW followup proposal

Targeted LBW observations of selected ALFALFA sources:

- 1. "Dark" galaxy candidates: high quality (Code 1) detections with no OC and not associated with known tidal debris fields
- 2. OH megamaser (OHMs) candidates: either at large blueshift or coincident (within centroiding accuracy) of OC of appropriate cz.
- 3. "Low mass dwarf candidates": low signal-to-noise ratio sources at low cz (< 1000 km/s)
- 4. Statistical samples of low S/N signals possibly associated with optical galaxies

ALFALFA: effective integration time of 40 seconds/beam LBW: 3 minutes ON-source

