The Local Universe

Brian Kent Cornell University

Ask yourself...

What is the Milky Way Galaxy, and how does it compare to other galaxies?

How do you define a galaxy?

What is the Local Group?

Do all galaxies have close neighbors?

What happens when galaxies collide?

A quick note on units...

• Distances: $1 \text{ kpc} = 3.08 \times 10^{19} \text{ meters}$

• Mass: $10^6 \,\mathrm{M}_{\odot} = 1.98 \,\mathrm{x} \,10^{36} \,\mathrm{kg}$

• Rates: $100 \text{ km/s} \sim 100 \text{ kpc/Gyr}$

A close friend: Our Milky Way Galaxy

• An Sbc galaxy that is 30 kpc in diameter

Anatomy of the Milky Way

- $\bullet R_0 \sim 8 \text{ kpc}$
- •200 billion stars
- •5 x $10^{11} M_{\odot}$
- •SFR ~ $3 M_{\odot}/\text{yr}$
- •Bulge ~ 3 kpc in diameter

A useful tool: Redshift

$$z = \frac{\lambda_{obs} - \lambda_0}{\lambda_0} = \frac{f_0 - f_{obs}}{f_{obs}}$$

- Measure the shift in a spectral line $-f_0$ is the rest frequency (λ_0 the rest wavelength)
- Extragalactic objects often identified by their cz measurement.
- ALFALFA will cover cz = -2000 to 17000 km/s

Expansion of the Universe

- Edwin Hubble (among others) showed the Universe was expanding!
- However, there are other factors to take into account in the local Universe peculiar velocities! Deviations can be quite large depending on the galaxy, and whether it is part of a group or a field galaxy.

$$cz = H_0 d$$

Around the Milky Way...

Around the Milky Way...

Around the Milky Way...

Fornax Dwarf © Anglo-Australian Obs./Royal Obs. Edinburgh

The Andromeda Galaxy

- Sb galaxy 770 kpc from the Milky Way.
- Larger, more luminous,
 with a larger disk scale
 length than the Milky Way
 it even rotates faster at
 260 km/s!
- At least 9 known satellite galaxies – dwarf elliptical and spheroidals!

The Andromeda Galaxy: GALEX

- Late-type spiral galaxy ~850
 kpc from the Milky Way and ~200 kpc from Andromeda
- Disk scale length is around 1.7 kpc, rotating around 120 km/s.

What are we missing!?!?!?!?

What are we missing!?!?!?!?

THE GAS!!!!!!!!

M33

- Richer in HI gas than M31 or the Milky Way VLA doppler image show movement of the HI gas towards and away.
- The HI disk extends out to 30 kpc, enough for M31 to cause tidal effects and warp the outer disk!

Galaxy Morphology

What do galaxies look like?

Well, it depends...

Galaxies across the spectrum

Radio Astronomy provides a *crucial* part of the picture!

Galaxy Types

Galaxy Type	Hubble	de Vaucoulers
Spiral	S, Sa, Sb	1 through 6
Elliptical	Е	-6 through –4
Dwarf	dE, dSph	
Lenticular	S0, SB0	-3, -2, -1
Irregular	Irr	

Hubble's Tuning Fork

Spiral Galaxies

THE LOCAL Universe

- Thin disks
- Most have some form of a bar arms will emanate from the ends of the bars
- Other classification:
 - 1. Relative importance of central luminous bulge and disk in overall light from the galaxy
 - 2. The tightness of the winding of the spiral arms
 - 3. Degree to which spiral arms are resolved into stars and individual HII regions

M51

Dwarf Galaxies

THE LOCAL UNIVERSE

- Smaller size than giant elliptical galaxies
- Lower surface brightness

Sagittarius Dwarf

Irregular Galaxies

• LMC and SMC are satellite galaxies of our own – disrupted by gravitational interaction with the Milky Way...

LMC and SMC

Irregular Galaxies

- M82 irregular starburst galaxy
- Star formation rate at 10 times the rate of our galaxy
- Chandra X-ray image reveals hot gas flowing out of the galaxy hot spots indicate x-ray binary stars some of the brightest known!

Elliptical Galaxies

- Smooth and very little structure; varying in shape
- Classified by EN where N=10(1-b/a)
- Large populations in clusters.
- Little gas don't see spectral HI lines

The Local Group

The Local group has 41 members, ranging from large spiral galaxies to small dwarf irregulars. Most galaxies are dwarf spheriodals...

The Local Group

- Giant spiralsdSph (+dEll)
- dirr
- dlrr/dSph

Groups of galaxies

- Galaxies can be gravitationally bound to each other, and undergo interactions and collisions.
- Separations across intergalactic distances range from 50 kpc up to 1 Mpc.
- Groups are important physically because one can determine a dynamical mass for the system.
- ALFALFA science goals include studying the effects within the group environment
 - What is the HI mass function the mass density of a given environment?
 - How do unseen HI clouds/starless galaxies effect dynamics?
 - Are their unseen tidal remnants or debris?
 - What are sizes of HI disks?

Neighboring Galaxy Groups

Groups of galaxies

TIDAL INTERACTIONS IN M81 GROUP

Stellar Light Distribution

21 cm HI Distribution

M83 Group

M83 SAB(s)c

Extended HI Disk of a BCD

M66 Group

NGC 3628 SAb pec

Arp 16 M 66 NGC 3627 SAb pec Sy 2

M 65 NGC 3623 SAb pec

M66 Group

Colliding Galaxies

Colliding Galaxies

Colliding Galaxies

Clusters of Galaxies

- Around half the galaxies in the Universe are found in clusters or groups.
- Cluster have a higher density than "loose" groups brightest galaxies are S0s and ellipticals instead of spirals
- Abell Catalog contains 4073 rich clusters
- Gravity binds the members, as well as hot intracluster gas (seen in the X-ray)

Virgo Cluster

THE LOCAL UNIVERSE

- $cz \sim 1050 \text{ km/s}$
- $\Delta v \sim 1000 \text{ km/s} !!$
- 1300 catalogued members!!
- Most galaxies are dwarfs
- Core radius ~ 500 kpc

Coma Cluster

- At cz = 6900 km/s
- Four times the size of Virgo!!
- Core contains only ellipticals.

Fornax cluster

• $cz \sim 1400 \text{ km/s}$

Fornax Cluster – Xray view

Fornax – optical + radio

Hercules Cluster

cz ~ 11,000 km/s

Perseus Cluster

 $cz \sim 5000 \text{ km/s}$

Leo Cluster

• $cz \sim 6400 \text{ km/s}$

Centaurus Cluster

- $cz \sim 3000 \text{ km/s}$
- Xray image shows gas expelled from the central member

Superclusters The leasest etapetimes

The largest structures in The Universe

Superclusters in the Universe

Local Supercluster

Pisces-Perseus Supercluster

Haynes & Giovanelli

The big picture

- 8800 galaxies from Springob, Haynes, Giovanelli, and Kent 2005!
- A large collection of HI in galaxies!

