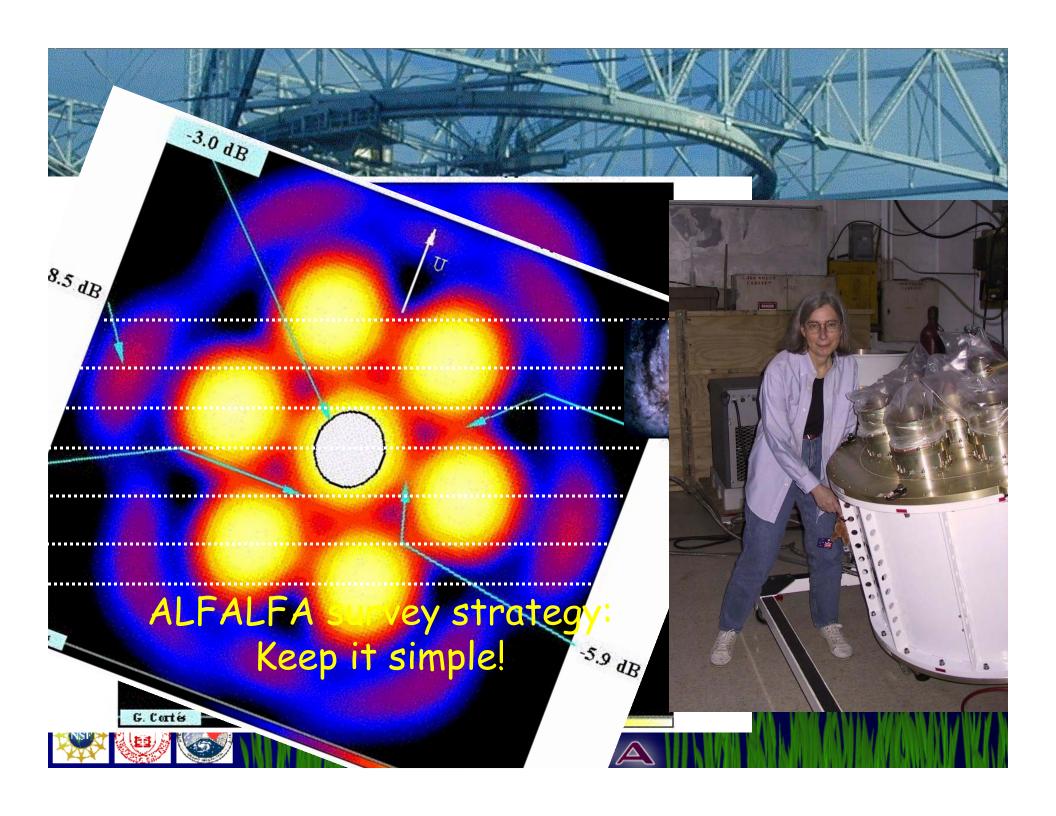
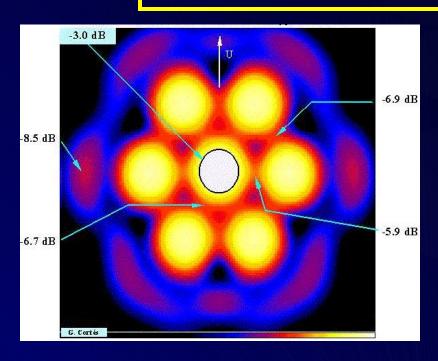
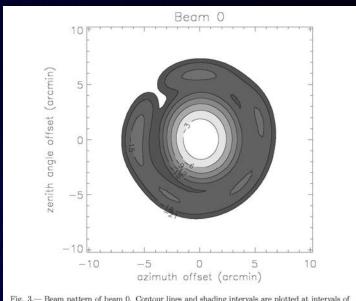

Using ALFA for ALFALFA

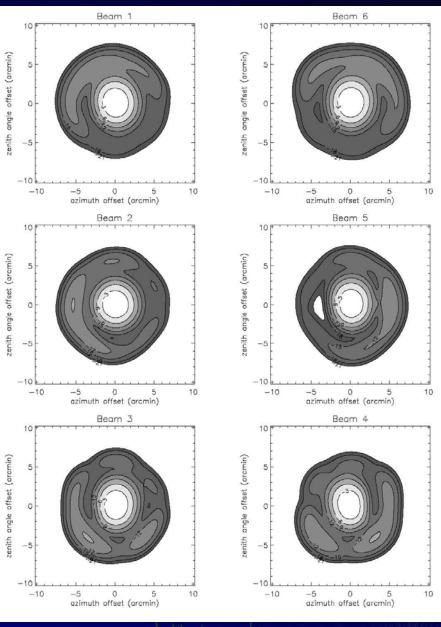
Martha Haynes, Cornell University 2006 ALFALFA Undergraduate Workshop





ALFA as a Camera




Fig. 3.— Beam pattern of beam 0. Contour lines and shading intervals are plotted at intervals of 3 dB below peak response (the highest contour is at half the peak power). The first sidelobe ring, with a diameter near 12', is at approximately -15 dB.

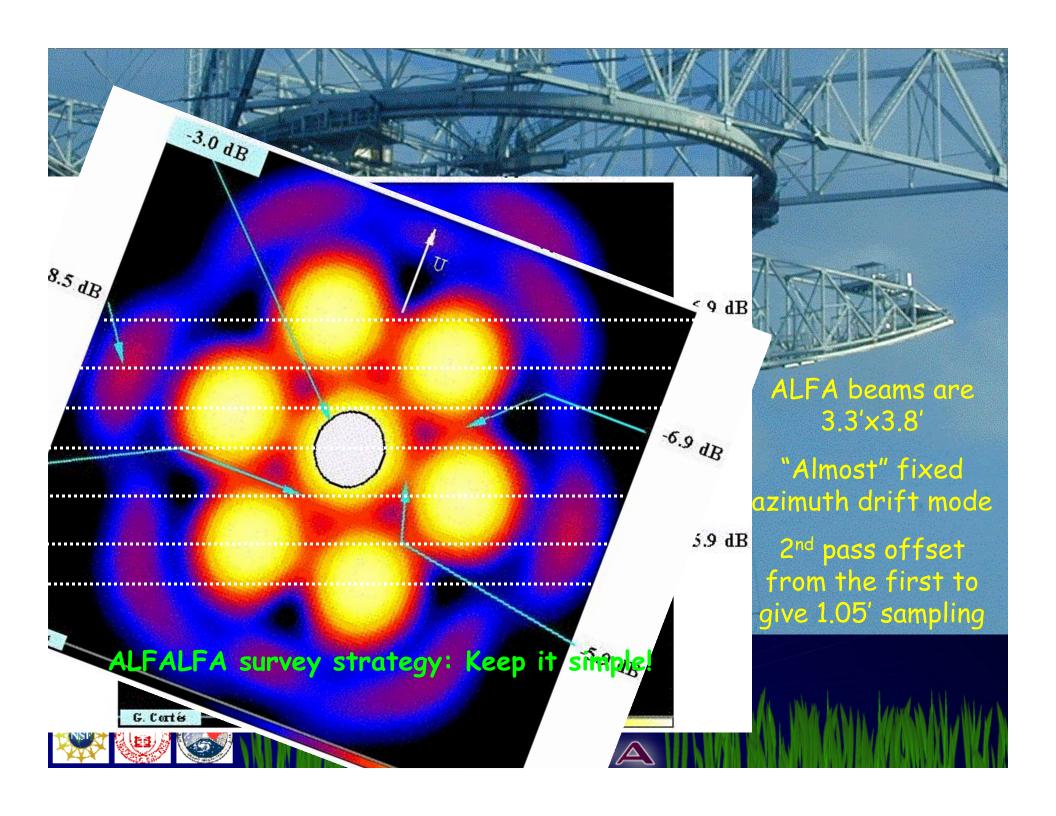
- The central pixel is more sensitive than the outer ones.
- The beams are really a bit elongated (ignore that for now!)
- The whole array can be rotated around the central beam
- · Each beam has sidelobes; they differ from beam to beam.

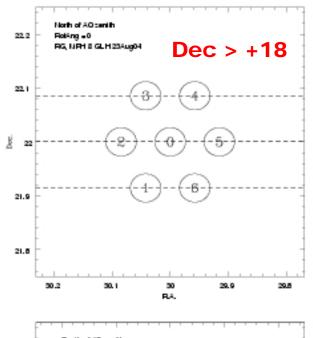
Outer beams

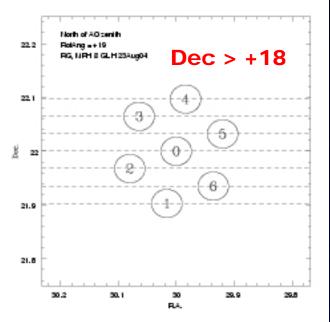
Notice that the sidelobe ring is asymmetric and always appears on the side opposite the central pixel.

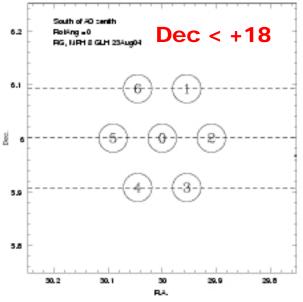
Bottom line:
We need to be wary
of sidelobe
contamination!

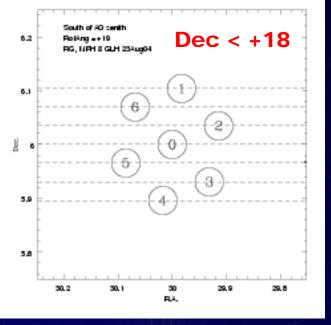
Technical considerations


- Gain, T_{sys} , footprint, sidelobes, RFI all change with Az, ZA, so adopt "fixed azimuth" mode
- Sensitivity falls off quickly beyond ZA > 15°
 i.e., Dec south of +3° or north of +33°
- Beam 0 has higher gain than outer pixels
- Beam orientation/spacing change with Az, ZA, ALFA RotAngl; desire drift tracks equally spaced in Declination
- Dome cannot track through zenith; minimum ZA for dome ~1.7°: "zone of avoidance"









Array

The individual feed horns move along an elliptical ring oriented in Az, ZA.

Note: The beams are actually elliptical, NOT circular as implied in this cartoon.

On meridian, 19° rotation

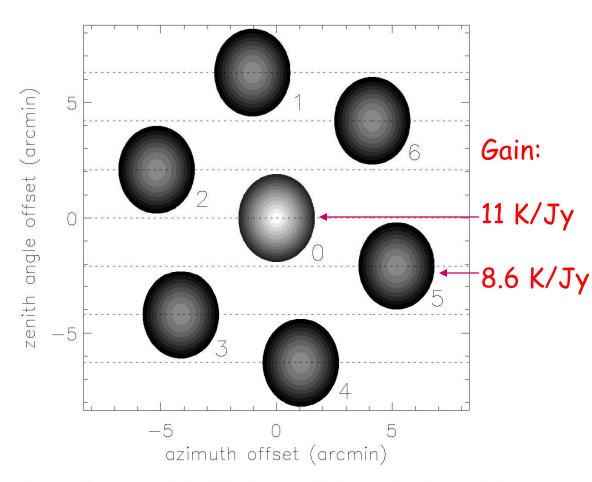
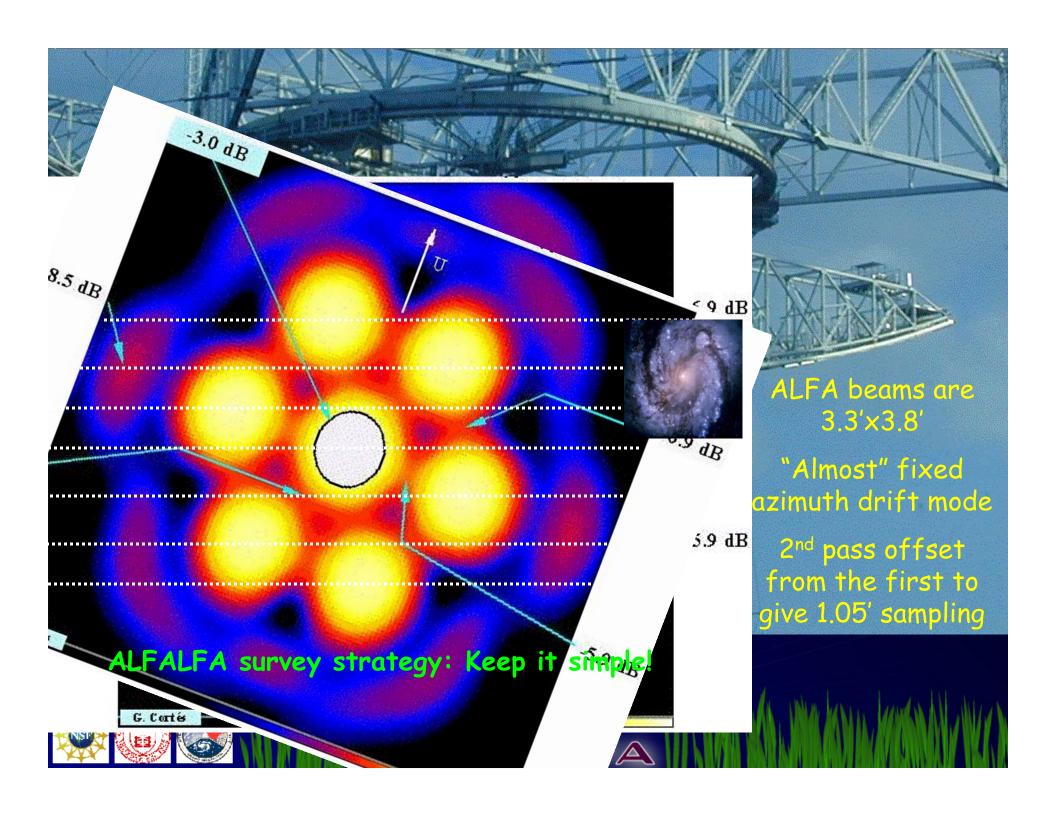


Fig. 2.— Sketch of the geometry of the ALFA footprint, with the array located along the local meridian and rotated by an angle of 19° about its axis. The outer boundary of each beam corresponds to the -3 dB level. The dashed horizontal lines represent the tracks at constant Declination of the seven ALFA beams, as data is acquired in drift mode.

Beam tracks are spaced equidistant in declination.


For a source south of zenith, the dome should be at azimuth 0° (or 360°).

ALFALFA drift mode

- "Almost" fixed azimuth drifts
 - Track in J2000 Declination
 - Declination of all survey drifts specified, except for +16° < DecJ < +20° (zenith "Zone of Avoidance")
- Specify observing "block" according to date/time at start, specified as yy.mm.dd

06.07.12 : Tonight's block

Block Date AST LST # DecJ 06.07.12 W 12Jul 17h00-18h30 11h55-13h35 16p2 +035336

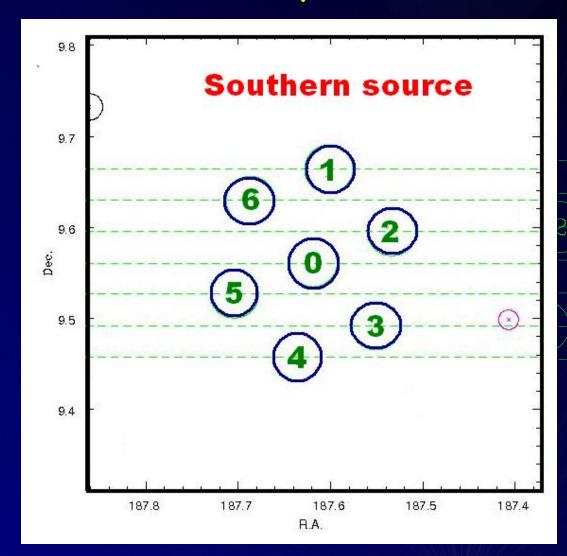
ALFALFA observing sequence

- Set dome at transit (360° or 180°)
- Rotate ALFA to 19°
- Setup spectrometer
- Start 600 sec_drift_scan
 - Record spectra every 1 sec (actually 14 = 7 beams X 2 2 polarizations/beam)
- Terminate drift scan
- Fire noise diode for 1 sec
- Close/open FITS data file
- Start next drift

Repeat until end of observing block

Calibration:

- 1. Noise diode
- 2. Radio continuum sources of known flux
- 3. Galactic Hydrogen



Beam layout on the sky

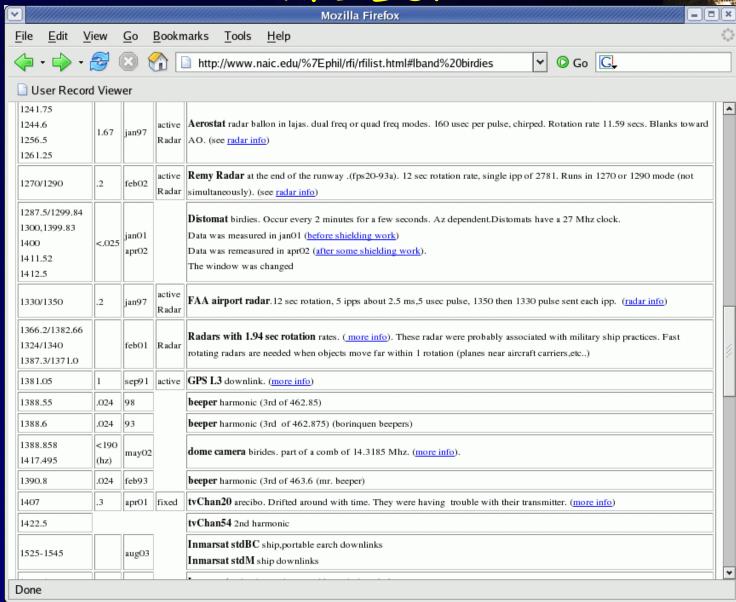
Beam orientation for source on meridian south of AO zenith, for ALFA rotation angle of +19°.

For this ALFA configuration, the tracks are spaced every 2.1 arcmin in Declination.

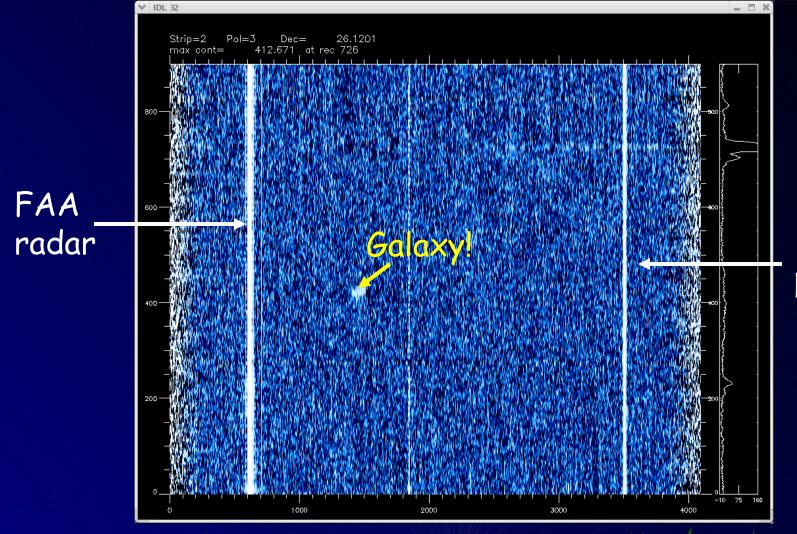
Radio Frequency Interference

- Man-made signals are much stronger than cosmic ones!
- Some are always present; others come and go.
- Radars (e.g. FAA at San Juan airport) occur with some regular period (e.g. 12 sec)
- Some RFI is so strong that it "saturates" the front end.

We have to live with it (but we don't have to like it!).



RFI List



RFI is ugly

Galactic hydrogen

Two-pass strategy

We want to drift across each stop on the sky TWICE

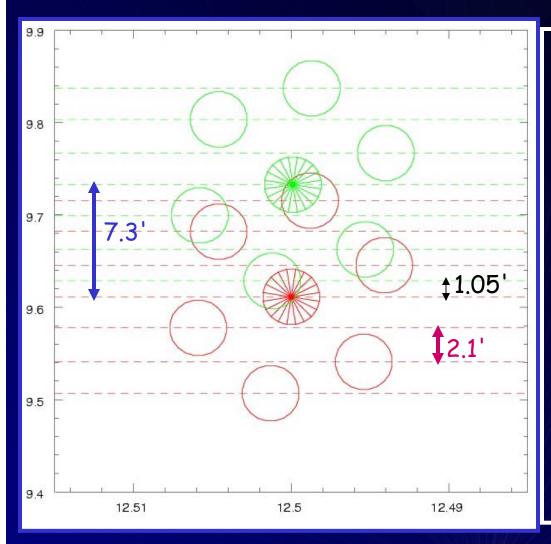
- Double integration time
- Helps to discriminate cosmic sources from
 - 1. Noise
 - 2. RFI

We offset the 2nd drift by half of the beam spacing.

- Helps with position centroiding
- Evens out the gain scalloping

We conduct the 2nd pass 3-9 months after the first.

- Cosmic sources will have shifted in frequency due to the Earth's motion around the Sun, but terrestrial ones won't have.
- Some interference comes and goes.



2-pass beam layout

Final coverage for 2 pass strategy

- For the 2nd pass, Beam 0, which has higher gain than the others, is offset by 7.3 arcmin from its 1st pass position.
- Some smoothing of gain scalloping.
- 2-pass sampling thus at 1.05 arcmin
- 2nd pass occurs 3-9 months after the 1st pass (vs. RFI)

ALFALFA schedule notation

- "Master list" of drift declinations preassigned, starting at 0° and moving northward to +36° => DriftN, N = 1, 148
- Two passes: p1 and p2

41p1	+095118	
42p1	+100554	14.6 arcmin
		7.3 arcmin
42p2	+101312	

Drift declination assignments

40	40p1	9.611670	+093642	40p2	9.733337	+094400
41	41p1	9.855003	+095118	41p2	9.976671	+095836
42	42p1	10.098337	+100554	42p2	10.220005	+101312
43	43p1	10.341671	+102030	43p2	10.463339	+102748
44	44p1	10.585 16th	2 +03°!	53'3	<mark>4"</mark> 0.706673	+104224
45	45p1	10.828	שרעדטני	7945	10.950006	+105700
46	46p1	11.071672	+110418	46p2	11.193340	+111136
47	47p1	11.315006	+111854	47p2	11.436674	+112612
48	48p1	11.558340	+113330	48p2	11.680008	+114048
49	49p1	11.801674	+114806	49p2	11.923342	+115524
50	50p1	12.045008	+120242	50p2	12.166676	+121000
51	51p1	12.288342	+121718	51p2	12.410009	+122436

Tile coverage

Follow "tile" layout: each covers 4° in Declination

- $Az = 0^{\circ}$ for $DecJ = +2^{\circ}, +6^{\circ}, +10^{\circ}, +14^{\circ}$
- $Az = 180^{\circ}$ for $DecJ = +22^{\circ}, +26^{\circ}, +30^{\circ}, +34^{\circ}$
- Az ~ 90° for DecJ ~ +18° (close to zenith)

Proposal: Cover 2 tile tracks/per year, spring and fall

Spring and fall tiles not necessarily the same

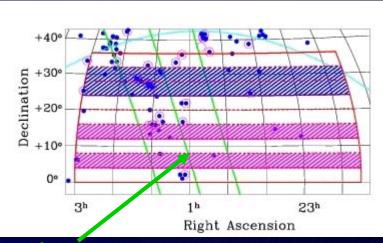
Spring 2005: +10° and +14°

Fall 2005: +26° and +30°

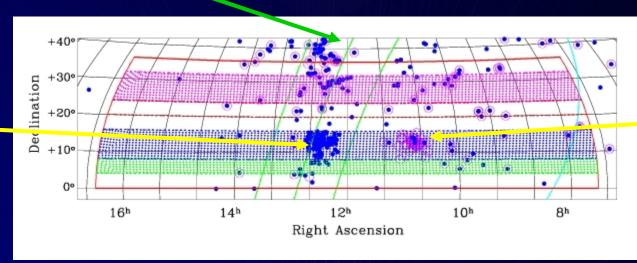
Spring 2006: Complete also +06°

ALFALFA Scheduling Strategy

- ALFALFA aims to survey 7000 square degrees of high galactic latitude sky.
- "Fixed azimuth drift" mode: the telescope moves only slightly, to maintain constant Dec (J2000); Drifts offset by 14.6 arcmin.
- A "tile" of data will contain all beam positions within a box of 20 min in RA by 4 degrees in Dec.
- Within a single observing block, the data taking sequence consists
 of a series of 600 second (10 min) drifts at constant Dec J.
- Over a season, we try to "complete" sets of drifts within a tile: 16 drifts/tile/pass.
- The second pass occurs 3-9 months after the 1st pass (to aid RFI identification and signal confirmation).



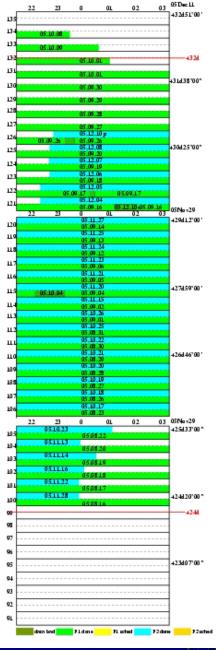
ALFALFA Survey 2005-7

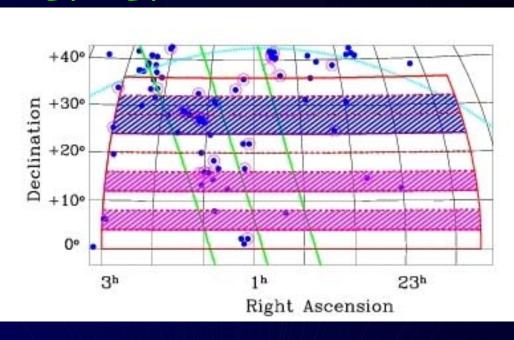

High galactic latitude sky visible from AO

- Commensal with TOGS HI
- Does not compete with galactic plane surveys

Supergalactic plane

Virgo _cluster


_Leo Group



ALFALFA: 22h < RA < 3h

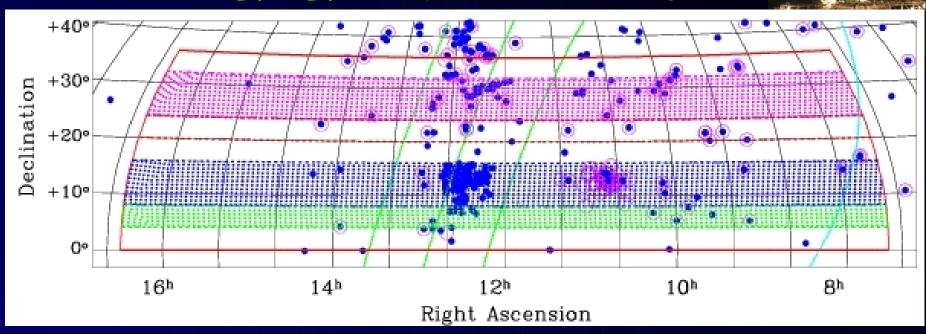
Status of Fall 2005:

Complete only +26° to +29°

Plan for Fall 2006:

- Complete +24° to +32°
- Complete +12° to +16°
- Complete +04° to +08°

- M33 and HVC's
- Several D<10Mpc groups
- anti-Virgo Local volume
- · Pisces-Perseus



ALFALFA: 07h30m < RA < 16h30m

- Virgo cluster
- · Leo region
- · Coma cluster
- · + lots more!

Status as of June 22, 2006:

- Complete only +05° to +16°
- Some coverage +04° to +05°
- First pass +26-30°, RA>11h

Plan for Spring 2007:

- Complete +04° to +05°
- Complete +24° to +32°

Maximizing Observing Efficiency

- · Telescope time is precious and competition is stiff.
- Our science goals demand high quality data.
- The legacy nature of ALFALFA raises the standards for data product generation and delivery.
- Arecibo and ALFA are complex instruments to use.
- RFI is nasty and inevitable.
- ALFALFA uses a lot of telescope time and generates a lot of data!
- The A2010 proposal was approved pending periodic reviews of our ability to perform the survey.
 - · We were recently told we've "passed" this year.

Practicalities of Scheduling

- Arecibo telescope time is in high demand.
- Arecibo serves a diverse set of scientists.
- We elect to observe only at night.
 - Reduced RFI levels
 - Minimal thermal effects
 - No solar interference
- · Pass 2 needs to take place 3-9 months after Pass 1
- The telescope schedule changes on short timescales
 - Targets of opportunity (killer asteroids, etc)
 - Hardware failures (theirs or ours)

A2010 blocks often cover only part of the RA range

Typical A2010 schedule

Arecibo Observatory Telescope Schedule

August 13 - August 27, 2006

TRANSMITTERS	
2380 430 HF	AST
Opt 47 System Checks	2
VISITORS R. Giovanelli	4
M. Haynes M. Shepard L. Benner S. Ostro	6
I. Stairs D. Stinebring J. Rankin	8
G. Wright D. Nice R. Ferdman	10
A. Wolszczan S. Stanimirovic J. Cordes	12
F. Camilo M. Putman H. Carlson	14
F. Djuth H. Carlson	16
COMMENSAL PROJECTS:	18
- A2059c with A2010	20
	22

AST	13 SUN	14 MON	15 TUE	16 WED	17 THU	18 FRI	19 SAT	20 SUN	21 MON	22 TUE	23 WED	24 THU	25 FRI	26 SAT	27 SUN	LST
2	A2010 - rg - _mh_	A2010 - rg - _mh_	A2010 - rg - _mh_	A2010 rg _ mh	A2010 rg _mh_	A2010 rg _mh_	A2010 rg _mh_	A2010 rg mh	P2178 dn is	A2010 rg mh	A2010 rg mh	A2010 rg mh	A2010 rg mh-	T1892 fd ms	Txxxx - sg ms (?) -	0
4	EALFA	 EALFA	 EALFA	EALFA	EALFA	EALFA	 EALFA	EALFA	X102 pp	EALFA	EALFA	EALFA	EALFA	5/5	-	
	BK127 - - ^{tg}			X111 to	X111 to		_P2030_	P2030_	eVLBI tg	X111 to	P2030	X102 pp	MAINT_	(DB) T2212	(DB) T2212	
10	L-w	MAINT elect	MAINT elect	MAINT f/ut	MAINT f/ut	-P2030- jc/fc _PALFA _	jc/fc PALFA	jc/fc PALFA	cs -	MAINT f/ut	jc/fc ⁻ PALFA	MAINT f/ut	elect	fd hc ms -	fd hc -	
12	X111 - to					MAINT elect	X111 to	X111 to	MAINT elect		MAINT elect		T1892 fd ms		-	
	A1852 bml						P1693 pf	_A1852_	_						- 	12
16	R2207 ms						P2111 aw	-bmt					_		- 	
18	- _ LB6 _	X108 R2207	X108 R2207	R2207	_ X108 _ ml	_A1589_ bml	_P1693_	P2178 dn is -	_ X108 _ ml	X108 _ ml	_ X108 _ ml	- X111 - to	-		- 	
20	-R2207 ms 2100	2100	ms 2100	ms 2100	P2176	P2176	P2176 P2202	rf 		 P2176.	P2176 pf	P2076	-		- 	
22	P2180	-P2030-	-P2030-	-pī2ō3ō-	P2177	P2202 jr - ^{"gw"} -	jr - 9w	 	P2030 jc/fc -	R2030 jc/fc -	P2030 jc/fc -	P2030 jc/fc	-57/ 5	-(ā)- -	- _(a)	19
24	_	jc/fc PALFA	jc/fc PALFA	jc/fc PALFA					PALFA	PALFA	PALFA	PALFA	(DB)	(SB)	(SB)	}

VER 2.0 - 071006

This week's schedule

Arecibo Observatory Telescope Schedule

July 2 - July 16, 2006

TRANSMITTERS

•	•	
Opt	47	
<u> </u>		System
		Checks
		CHECKS

- Q. Zhou Y. Morton
- M. Brenneman
- R. Nikoukar
- J. Cordes
- F. Camilo
- J. Davies
- D. Nice I. Stairs
- R. Ferdman
- R. Giovanelli
- B. Kent
- M. Putman
- S. Stanimirovic
- M. McLaughlin
- D. Stinebring

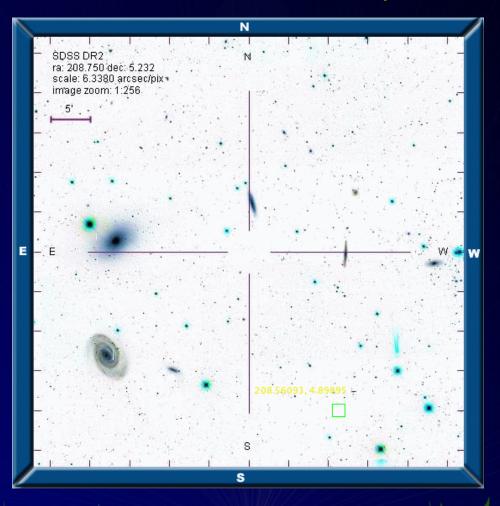
COMMENSAL PROJECTS: - A2059c with A2048

VER 4.0 - 071006

AST	2 SUN	3 MON	4 TUE	5 WED	6 THU	7 FRI	8 SAT	9 SUN	10 MON	11 TUE	12 WED	13 THU	14 FRI	15 SAT	16 SUN	LST
2	_T2690 rn - ms -	T2165 qz mb	T2165 qz mb	T2165 qz mb	PZOJO jc/fc PALFA -	P2030 jc/fc -PALFA -	 P2030 jc/fc -PALFA -	 P2030 jc/fc	 P2178 dn - is -	P2030 jc/fc	P2180	P2109 A1852	P2030 jc/fc	P2030 jc/fc	P2030_ jc/fc	
4				-	A2048 - jd - AGES	A2048 - jd - AGES	A2048 jd - AGES	A2048 - jd - AGES	rf 	A2048 _ jd _ AGES	A2048 jd AGES	A2048 jd AGES	A2048 jd AGES	A2048 jd AGES	A2048_ jd -AGES -	n
6	- -	₋	 -		 - X1111 - to	 -A1852- bml	 X102 - pp	 X102 - pp cs		 _P1693_ pf	X111 - to -	 A1852 - bml -	 P1693 - pf -	X102 - pp -	X102 - pp -	*
8	_T2029 qz	T2029 qz	T2029 qz	-	MAINT elect	MAINT f/ut	- cs 		X111 MAINT f/ut	MAINT f/ut	MAINT elect	MAINT elect	X108 ml	X111		
10	- ym - - jz 	ym - jz -	ym - jz -				P2030 jc/fc	jc/fc _						S1662	-P2030- jc/fc _ _PALFA _	
14	- 			_MAINT_ elect	- -		X111 to	PALFA X111 to					_Merc _	_Merc _	X111 - to -	
16	- (DB) ⁻	(DB) -	(DB) -				-A2215- rg	-A1852- bml					_ X113 _	A1852 -bm+	- -P1693- _ μf	12
18	_T2165_ qz	_T2165_ qz	qz	. X108 .	_ X108 _	_ X111 _	- b-k- 		_ X108 _	_ X108 .	.A2140.	. X108 _	_ X111 _			
20	- mb 	_ mb 	_ mb 	A2049 tg -	A2049 - tg -	A2049 _ tg _		P2178 dn - is	A2049 - tg -	A2049 - tg -	A2049 - tg -	A2049 - tg -	A2049 - tg -	A2049 - tg -	A2049 - tg -	
22		- -	- -		-P2176-			- ' -	P2176 A2060	-P2176- pf	-P2176-	A2060	P2176 A2060	A2060	A2060 mp -	
24				P2076	A2060 mp	A2060 mp	A2060 mp		mp	P2180	P2076	mp	mp	mp 		19

ALFALFA websites

- Cornell website (public)
 - http://egg.astro.cornell.edu/alfalfa
- Cornell website (team only; password required)
 - http://caborojo.astro.cornell.edu/alfalfalog
- Arecibo A2010 website (not obvious)
 - http://www.naic.edu/~a2010/galaxy_a2010.html
- Milano Followup Team wiki (password required)
 - http://cosmos.iasf-milano.inaf.it/alfalfa_wiki/



So, enough talk; let's observe....

