

Cornell University

Questions to ponder...

Galaxies in The Local Universe

How do you define a galaxy?
What is the Milky Way Galaxy, and how does it compare to o other galaxies?
What is the Local Group?
Do all galaxies have close neighbors?
What happens when galaxies collide?

- Measure the shift in a spectral line $-f_0$ is the rest frequency (λ_0 the rest wavelength)
- Extragalactic objects often identified by their *cz* measurement.
- ALFALFA will cover cz = -2000 to 17000 km/s (out to 250 Mpc)

Expansion of the Universe

- Edwin Hubble showed the Universe was expanding!
- However, there are other factors to take into account in the local Universe – peculiar velocities! Deviations can be quite large depending on the galaxy, and whether it is part of a group or a field galaxy.

 $cz = H_0 d$

Galaxies in

The Local

Universe

Distances to nearby galaxies

Tonry, et al. 2000

Galaxy Morphology

Galaxies across the spectrum

Galaxies in The Local Universe

What do galaxies look like?

M81

Are all galaxies the same?

Galaxy Type	Hubble	de Vaucoulers
Spiral	S, Sa, Sb	1 through 6
Elliptical	E	-6 through –4
Dwarf	dE, dSph	
Lenticular	S0, SB0	-3, -2, -1
Irregular	Irr	

Spiral Galaxies

- Thin disks
- Most have some form of a bar arms will emanate from the ends of the bars
- Other classification:
 - 1. Relative importance of central luminous bulge and disk in overall light from the galaxy
 - 2. The tightness of the winding of the spiral arms
 - 3. Degree to which spiral arms are resolved into stars and individual HII regions

M51 cz = 600 km/s

cz = -179 km/s

Galaxies in

The Local

Universe

Dwarf Galaxies

- Smaller size than giant elliptical galaxies
- Lower surface brightness

cz = -200 km/s

• dE galaxies dominate Virgo

cz = -79 km/s

Galaxies in

The Local

Universe

Sagittarius Dwarf

Irregular Galaxies

Galaxies in The Local Universe

 LMC and SMC are satellite galaxies of our own – disrupted by gravitational interaction with the Milky Way...

LMC and SMC

Irregular Galaxies

- M82 irregular starburst galaxy
- Star formation rate at **10 times** the rate of our galaxy
- Chandra X-ray image reveals hot gas flowing out of the galaxy – hot spots indicate x-ray binary stars – some of the brightest known!

Galaxies in The Local Universe

cz = 203 km/s

Elliptical Galaxies

Galaxies in The Local Universe

- Smooth and very little structure; varying in shape
- Classified by EN where N=10(1-b/a)
- Large populations in clusters.
- Little gas don't see spectral HI lines

M87

The Local Group

Galaxies in The Local Universe

The Local group has 41 members, ranging from large spiral galaxies to small dwarf irregulars. Most galaxies are dwarf spheriodals...

ightarrow

The Local Group

- Giant spirals
- dSph (+dEll)
- dlrr
- dlrr/dSph

The Milky Way Galaxy

Galaxies in The Local Universe

• An Sbc galaxy that is 30 kpc in diameter

Anatomy of the Milky Way

Galactic component	h_z (pc)	σ_R (km s ⁻¹)	σ_{ϕ} (km s ⁻¹)	σ_z (km s ⁻¹)	$\langle v_y \rangle$ (km s ⁻¹)	
Ht gas near the Sun	130		≈5	≈7	tiny	
Local CO, H ₂ gas	65		4		tiny	
Disk stars: $Z > Z_{\odot}/4$		(Fig. 2.8)				
$\tau < 3 \text{Gyr}$	≈ 250	30	21	16	-11	
$3 < \tau < 6 \text{Gyr}$	≈300	36	25	19	-9	
$6 < \tau < 10 \text{Gyr}$	≈350	38	25	24	-16	
$\tau > 10 \text{Gyr}$		62	52	37	-21	
Thick disk						
[Fe/H] > -0.8	~1500	52	37	40	-35	
Halo stars near Sun	_					
[Fe/H] < -1.6	$\gtrsim 1 \text{ kpc}$	~150	~100	~100	-210	
Halo stars at $2.5R_0$	few kpc	80-100	130-150	130-150	-220	

Anatomy of the Milky Way

Galaxies in The Local Universe

• $R_0 \sim 8 \text{ kpc}$ •200 billion stars • $M_{tot} 5 \times 10^{11} M_{\odot}$ • $SFR \sim 3 M_{\odot}/yr$ •Bulge ~ 3 kpc in diameter

Around the Milky Way...

Galaxies in The Local Universe

100 000 ly

Around the Milky Way...

Galaxies in The Local Universe

. 100 000 ly

Galaxies in The Local Universe

© Anglo-Australian Obs./Royal Obs. Edinburgh

© Anglo-Australian Obs./Royal Obs. Edinburgh

The Andromeda Galaxy

Galaxies in The Local Universe

- Sb galaxy 770 kpc from the Milky Way.
- Larger, more luminous, with a larger disk scale length than the Milky Way

 it even rotates faster at 260 km/s!
- At least 9 known satellite galaxies dwarf elliptical and spheroidals!

cz = -300 km/s

The Andromeda Galaxy

Galaxies in The Local Universe

• GALEX mission mosaic in the ultraviolet

$$cz = -300 \text{ km/s}$$

- Late-type spiral galaxy ~850 kpc from the Milky Way and ~200 kpc from Andromeda
- Disk scale length is around 1.7 kpc, rotating around 120 km/s.

cz = -179 km/s

Galaxies in The Local Universe

 Richer in HI gas than M31 or the Milky Way – VLA doppler image show movement of the HI gas towards and away.

M33

• The HI disk extends out to 30 kpc, enough for M31 to cause tidal effects and warp the outer disk!

Galaxy Groups

Groups of galaxies

- Galaxies can be gravitationally bound to each other, and undergo interactions and collisions.
- Separations across intergalactic distances range from 50 kpc up to 1 Mpc.
- Groups are important because one can determine a dynamical mass for the system.
- ALFALFA science goals include studying the effects within the group environment
 - What is HI mass function?
 - How do unseen HI clouds/starless galaxies effect dynamics?
 - Are their unseen tidal remnants or debris?
 - What are sizes of HI disks?

Neighboring Galaxy Groups

Parameter	Milky Way	M31	M81	Cen A	M83	IC 342	Maffei	Sculptor ^a	CVn I ^a
D _{MW} (Mpc)	0.01	0.77	3.63	3.66	4.56	3.28	3.01:	3.94	4.09
D _{LG} (Mpc)	0.43	0.34	3.47	4.10	4.98	2.94	2.67:	3.79	4.17
SGZ ^b (Mpc)	0.00	0.07	0.04	-0.33	0.08	0.02	0.08	-0.34	0.77
N _{tot}	15	19	29	28	14	8	8:	6	9
N _{E+dSph}	10	13	11	18	4	0	1:	3	1
Туре(1)	4	3	3	-2	5	5	4	5	2
$M_B(1)$ (mag)	-20.80	-21.58	-21.06	-20.77	-20.43	-20.69	-20.15	-21.37	-19.83
$V_m(1) \ (\text{km s}^{-1}) \dots$	220	255	232	398	211	162	163	199	164
$V_{\rm LG}(1) ({\rm km \ s^{-1}}) \dots$	-88	-35	107	301	304	245	212	274	353
$\langle V_{\rm LG} \rangle$ (km s ⁻¹)	-79	-16	193	312	308	229	302	279	306
$\sigma_v ({\rm km}~{\rm s}^{-1})$	76	77	91	105	71	54	59	54	56
$\langle R_p \rangle$ (kpc)	155	254	211	290	164	322	104	359	385
$L_B (10^{10} L_{\odot})$	3.28	6.83	6.11	5.55	2.31	3.21	2.69	5.58	2.00
$M_{\rm vir} (10^{10} M_{\odot}) \dots$	93	57	117	489	109	57	65	332	267
$M_{\rm orb} \ (10^{10} \ M_{\odot})$	96	111	197	288	100	95	135	153	322
$M_{\rm vir}/L \ (M_{\odot} \ L_{\odot}^{-1})$	28	8	19	88	47	18	24	60	133
$M_{\rm orb}/L \ (M_{\odot} \ L_{\odot}^{-1})$	29	16	32	52	43	30	50	28	161
<i>T</i> _{cross} (Gyr)	2.1	3.3	2.3	2.8	2.3	5.9	1.8	6.6	6.9

Neighboring Galaxy Groups

Galaxies in The Local Universe

TIDAL INTERACTIONS IN M81 GROUP

Stellar Light Distribution

21 cm HI Distribution

cz = -34 km/s

Galaxies in The Local Universe

TIDAL INTERACTIONS IN M81 GROUP

Stellar Light Distribution

21 cm HI Distribution

cz = -34 km/s

Cen A Group

Galaxies in The Local Universe

cz = 547 km/s

cz = +513 km/s

Colliding Galaxies

Galaxies in The Local Universe

cz = 1706 km/s

Colliding Galaxies

VLA

Galaxies in The Local Universe

cz = 1706 km/s

Colliding Galaxies

$$cz = 422 \text{ km/s}$$

Galaxy Clusters

Clusters of Galaxies

- Around half the galaxies in the Universe are found in clusters or groups.
- Cluster have a higher density than "loose" groups brightest galaxies are S0s and ellipticals instead of spirals
- Abell Catalog contains 4073 rich clusters
- Gravity binds the members, as well as hot intracluster gas (seen in the X-ray)

Clusters of Galaxies

- Some well known clusters:
 - Virgo
 - Fornax
 - Eridanus
 - Coma
 - Perseus
 - Hercules
 - Leo
 - Centaurus

Virgo Cluster

- *cz* ~ 1035 km/s
- $\Delta v \sim 1000 \text{ km/s} !!$
- 1300 catalogued members!!
- Most galaxies are dwarf elliptical type
- Core radius ~ 500 kpc

Galaxy distributions

- The E+S0 galaxy distribution are more gaussian in nature.
- The wider dispersion in the late-type galaxies is indicative of the infall/expansion regions
- Morphology density relation details that the spiral fraction decreases in higher density regions, such as that of a cluster.

Fornax cluster

Galaxies in The Local Universe

• $cz \sim 1400 \text{ km/s}$

Fornax Gala

Fornax Cluster – Xray view

Fornax – optical + radio

View of the Local Universe

Local Universe Overview

- Springob, C.M. et al. 2005, ApJS. (in press)
- ~9000 redshifts based on HI detections
- Data taken from a variety of radio telescopes...

. ·

References and Acknowledgements

- Hibbard's Rogue's Gallery
- Herter, T. Astro 530, Cornell University
- Malin, D. Anglo-Australiian
- Alex Mellinger
- Mateo, et. al.
- APOD
- Haynes, M. P.
- Giovanelli, R.
- J. Sanders, A. Fabian
- KPNO REU Program
- Nigel Sharp, KPNO, WIYN
- Jason Ware
- Sparke and Gallagher, Galaxies in the Universe
- Karachentsev, I.D. 2005, AJ, 129,178
- NRAO Image Gallery
- Springob, C.M.
- Spizer Multiwavelength View M81
- Abell, et al. 1989. ApJS, 70,1
- Sarah Maddison