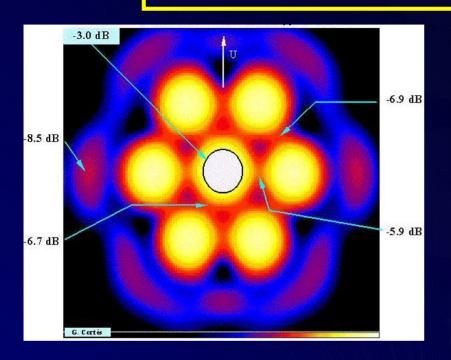

Using ALFA for ALFALFA

Martha Haynes, Cornell University 2005 ALFALFA Undergraduate Workshop



ALFA as a Camera

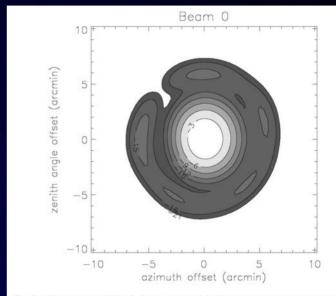
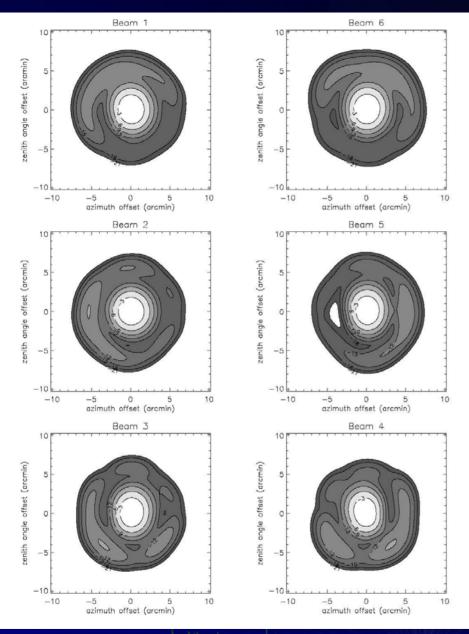


Fig. 3.— Beam pattern of beam 0. Contour lines and shading intervals are plotted at intervals of 3 dB below peak response (the highest contour is at half the peak power). The first sidelobe ring, with a diameter near 12', is at approximately -15 dB.

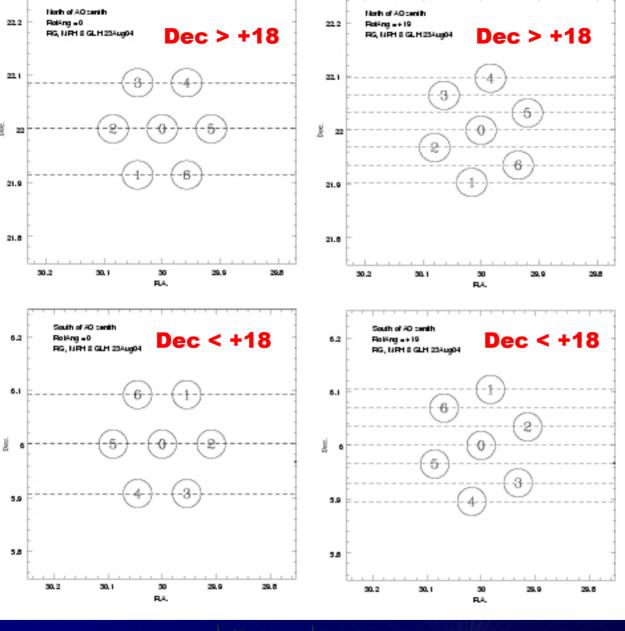

- The central pixel is more sensitive than the outer ones.
- The beams are really a bit elongated (ignore that for now!)
- The whole array can be rotated around the central beam
- · Each beam has sidelobes; they differ from beam to beam.

Outer beams

Notice that the sidelobe ring is asymmetric and always appears on the side opposite the central pixel.

Bottom line:
We need to be wary
of sidelobe
contamination!

Technical considerations


- Gain, T_{sys} , footprint, sidelobes, RFI all change with Az, ZA, so adopt "fixed azimuth" mode
- Sensitivity falls off quickly beyond ZA > 15°
 i.e., Dec south of +3° or north of +33°
- Beam 0 has higher gain than outer pixels
- Beam orientation/spacing change with Az, ZA, ALFA RotAngl; desire drift tracks equally spaced in Declination
- Dome cannot track through zenith; minimum ZA for dome ~1.7°: "zone of avoidance"

The individual feed horns move along an elliptical ring oriented in Az, ZA.

Note: The beams are actually elliptical, NOT circular as implied in this cartoon.

On meridian, 19° rotation

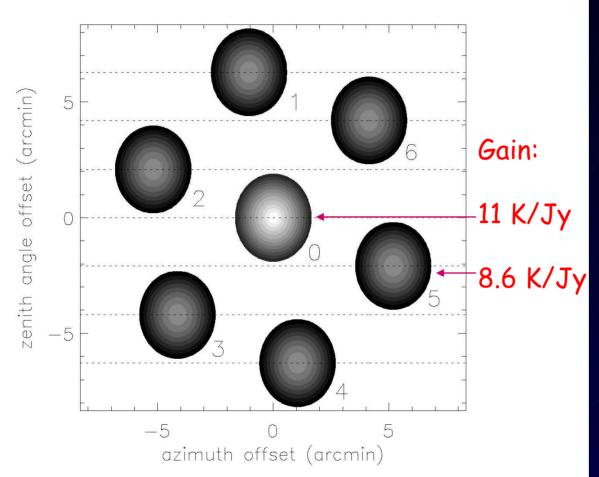


Fig. 2.— Sketch of the geometry of the ALFA footprint, with the array located along the local meridian and rotated by an angle of 19° about its axis. The outer boundary of each beam corresponds to the -3 dB level. The dashed horizontal lines represent the tracks at constant Declination of the seven ALFA beams, as data is acquired in drift mode.

Beam tracks are spaced equidistant in declination.

For a source south of zenith, the dome should be at azimuth 0° (or 360°).

ALFALFA drift mode

- "Almost" fixed azimuth drifts
 - Track in J2000 Declination
 - Declination of all survey drifts specified, except for +16° < DecJ < +20° (zenith "Zone of Avoidance")
- Specify observing "block" according to date/time at start, specified as yy.mm.dd

05.07.06 : Tonight's block

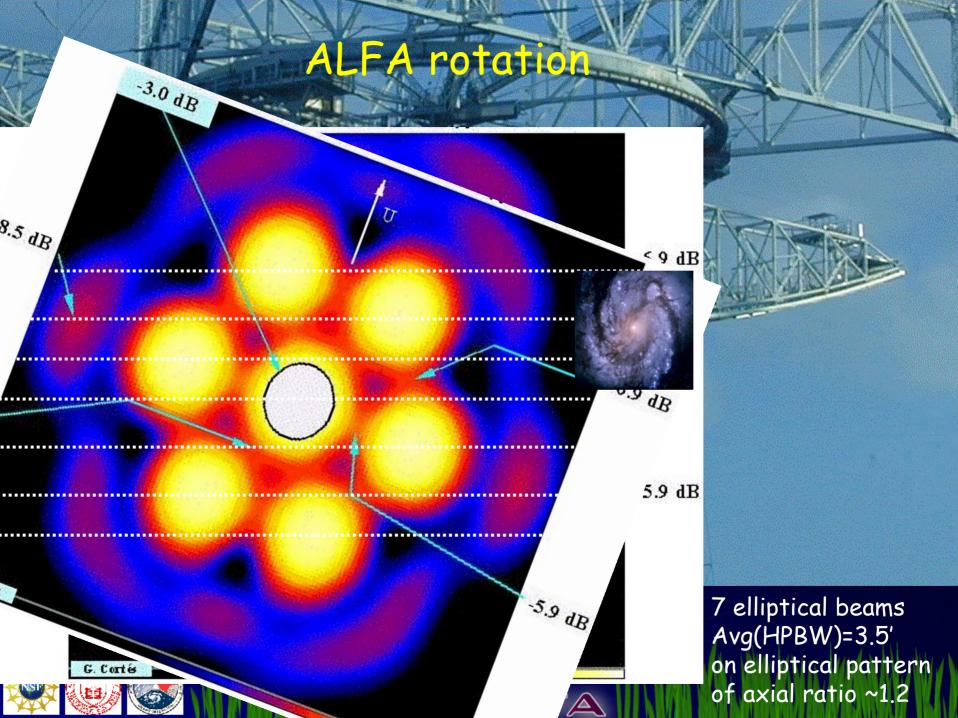
Block Date AST LST # DecJ 05.07.06 W 06Jul 18h45-20h30 13h18-15h03 22p1 +051354

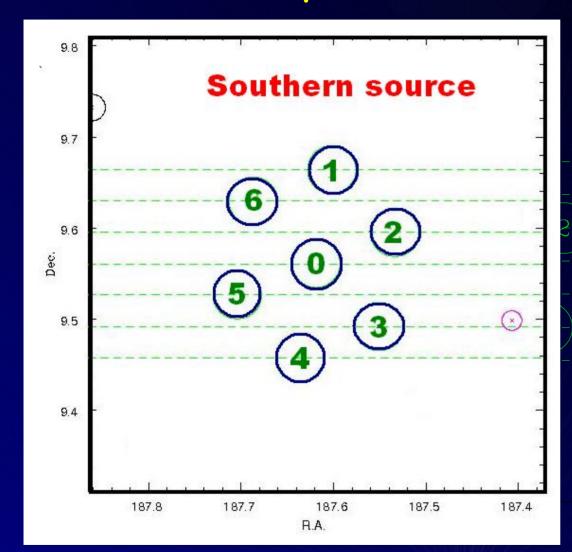
ALFALFA observing sequence

- Set dome at transit (360° or 180°)
- Rotate ALFA to 19°
- Setup spectrometer
- · Start 600 sec_drift_scan
 - Record spectra every 1 sec (actually 14 = 7 beams X 22 polarizations/beam)
- · Terminate drift scan
- Fire noise diode for 1 sec
- Close/open FITS data file
- Start next drift

Repeat until end of observing block

Calibration:


- 1. Noise diode
- 2. Radio continuum sources of known flux
- 3. Galactic Hydrogen



Beam layout on the sky

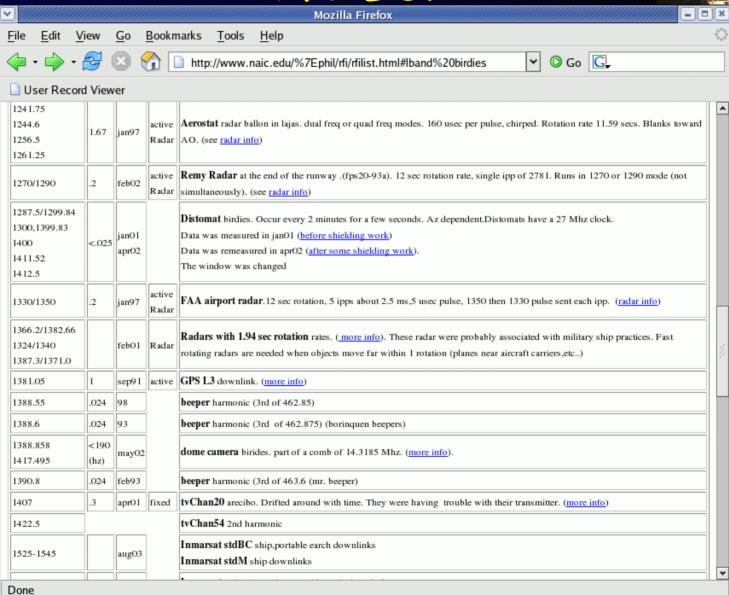
Beam orientation for source on meridian south of AO zenith, for ALFA rotation angle of +19°.

For this ALFA configuration, the tracks are spaced every 2.1 arcmin in Declination.

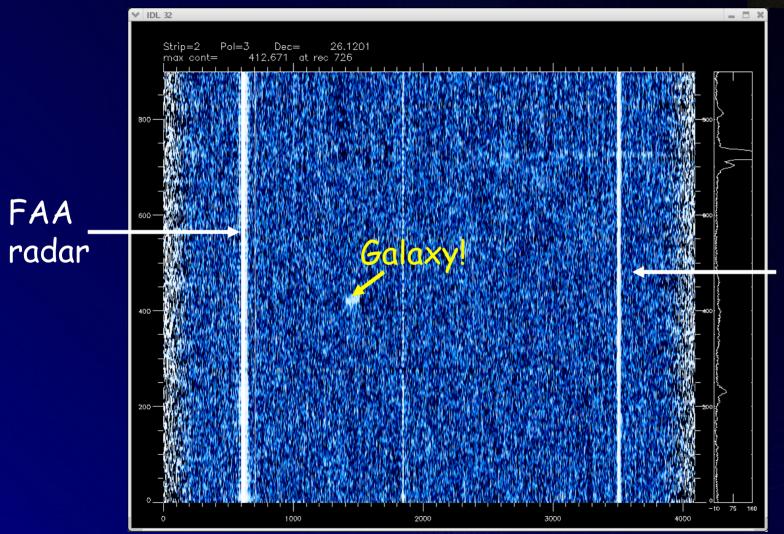
Radio Frequency Interference

- Man-made signals are much stronger than cosmic ones!
- Some are always present; others come and go.
- Radars (e.g. FAA at San Juan airport) occur with some regular period (e.g. 12 sec)
- Some RFI is so strong that it "saturates" the front end.

We have to live with it (but we don't have to like it!).

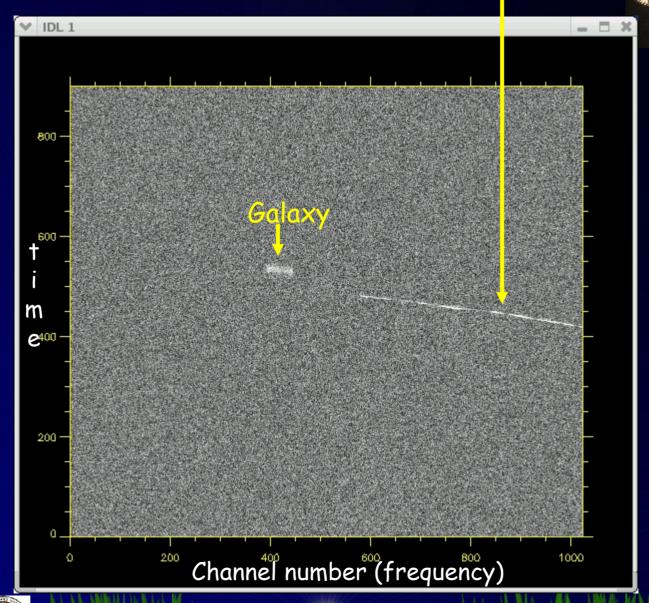


RFI List



RFI is ugly

Galactic hydrogen



The wandering birdy

Two-pass strategy

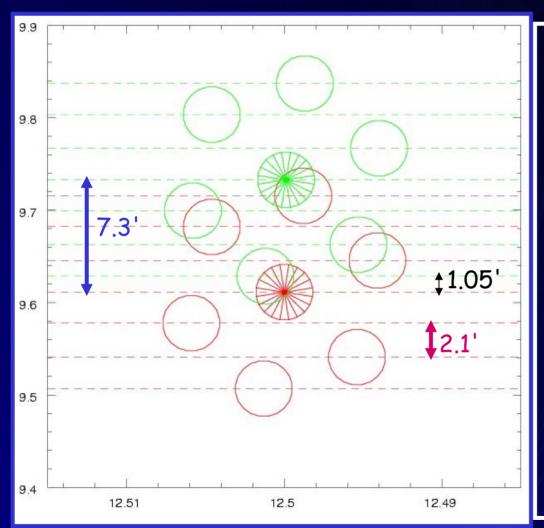
- Double integration time
- Helps to discriminate cosmic sources from
 - 1. Noise
 - 2. RFI

We offset the 2nd drift by half of the beam spacing.

- Helps with position centroiding
- Evens out the gain scalloping

We conduct the 2nd pass 3-9 months after the first.

- Cosmic sources will have shifted in frequency due to the Earth's motion around the Sun, but terrestrial ones won't have.
- Some interference comes and goes.



2-pass beam layout

Final coverage for 2 pass strategy

- For the 2nd pass, Beam 0, which has higher gain than the others, is offset by 7.3 arcmin from its 1st pass position.
- Some smoothing of gain scalloping.
- 2-pass sampling thus at 1.05 arcmin
- 2nd pass occurs 3-9 months after the 1st pass (vs. RFI)

ALFALFA schedule notation

- "Master list" of drift declinations preassigned, starting at 0° and moving northward to +36° => DriftN, N = 1, 148
- Two passes: p1 and p2

41p1	+095118	
42p1	+100554	14.6 arcmin
		7.3 arcmin
42p2	+101312	

Drift declination assignments

40	40p1	9.611670	+093642	40p2	9.733337	+094400
41	41p1	9.855003	+095118	41p2	9.976671	+095836
42	42p1	10.098337	+100554	42p2	10.220005	+101312
43	43p1	10.341671	+102030	43p2	10.463339	+102748
44	44p1	10.585 22	n1 +05°	13'5	<mark></mark>).706673	+104224
45	45p1	10.828	1107776	10 0	10.950006	+105700
46	46p1	11.071672	+110418	46p2	11.193340	+111136
47	47p1	11.315006	+111854	47p2	11.436674	+112612
48	48p1	11.558340	+113330	48p2	11.680008	+114048
49	49p1	11.801674	+114806	49p2	11.923342	+115524
50	50p1	12.045008	+120242	50p2	12.166676	+121000
51	51p1	12.288342	+121718	/51p2	12.410009	+122436

Tile coverage

Follow "tile" layout: each covers 4° in Declination

- $Az = 0^{\circ}$ for $DecJ = +2^{\circ}, +6^{\circ}, +10^{\circ}, +14^{\circ}$
- $Az = 180^{\circ}$ for $DecJ = +22^{\circ}, +26^{\circ}, +30^{\circ}, +34^{\circ}$
- · Az ~ 90° for DecJ ~ +18° (close to zenith)

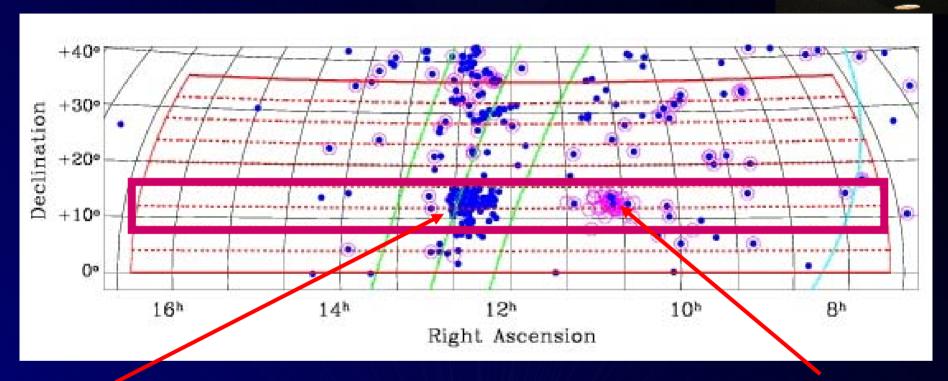
Proposal: Cover 2 tile tracks/per year, spring and fall

Spring and fall tiles not necessarily the same

Spring 2005: +10° and +14°

Fall 2005: +26° and +30°

ALFALFA Scheduling Strategy

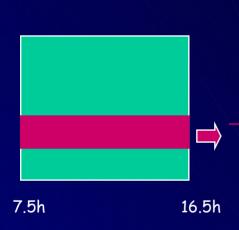

- ALFALFA aims to survey 7000 square degrees of high galactic latitude sky.
- "Fixed azimuth drift" mode: the telescope moves only slightly, to maintain constant Dec (J2000); Drifts offset by 14.6 arcmin.
- A "tile" of data will contain all beam positions within a box of 20 min in RA by 4 degrees in Dec.
- Within a single observing block, the data taking sequence consists
 of a series of 600 second (10 min) drifts at constant Dec J.
- Over a season, we try to "complete" sets of drifts within a tile: 16 drifts/tile/pass.
- The second pass occurs 3-9 months after the 1st pass (to aid RFI identification and signal confirmation).

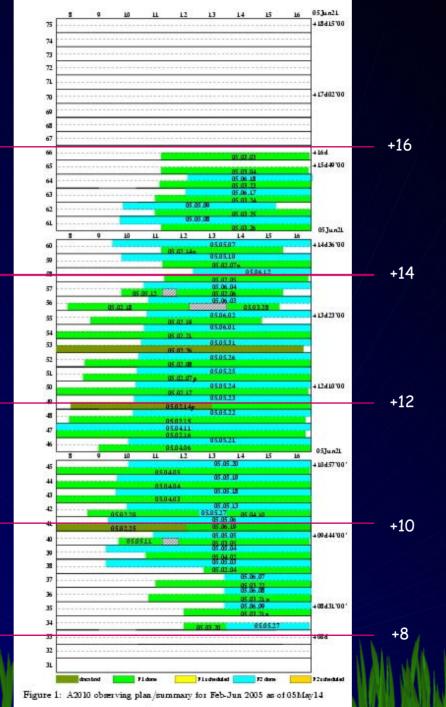
ALFALFA: Spring Sky

Virgo cluster D=16.7 Mpc

2005: Tiles at $+10^{\circ}$ and $+14^{\circ}$

- · Leo to Virgo region
 - · Leo Group
 - · Virgo cluster core


Leo I group D=10 Mpc



ALFALFA Current status

22h

03.5h

Maximizing Observing Efficiency

- · Telescope time is precious and competition is stiff.
- · Our science goals demand high quality data.
- The legacy nature of ALFALFA raises the standards for data product generation and delivery.
- Arecibo and ALFA are complex instruments to use.
- RFI is nasty and inevitable.
- ALFALFA uses a lot of telescope time and generates a lot of data!
- The A2010 proposal was approved pending periodic reviews of our ability to perform the survey.

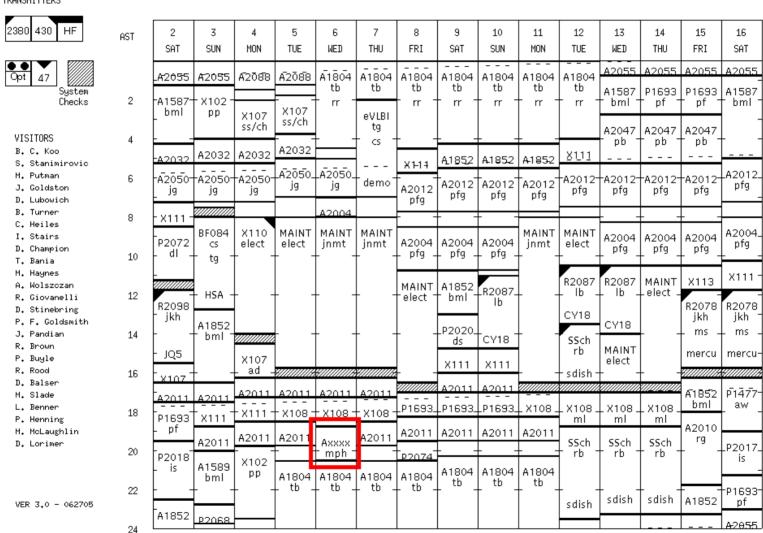
Practicalities of Scheduling

- Arecibo telescope time is in high demand.
- Arecibo serves a diverse set of scientists.
- · We elect to observe only at night.
 - Reduced RFI levels
 - Minimal thermal effects
 - No solar interference
- Pass 2 needs to take place 3-9 months after Pass 1
- · The telescope schedule changes on short timescales
 - Targets of opportunity (killer asteroids, etc)
 - Hardware failures (theirs or ours)

A2010 blocks often cover only part of the RA range

Typical A2010 schedule

TRANSMITTERS								May 7	- May 21	L, 2005							
2380 430 HF	AST	7 SAT	8 SUN	9 MON	10 TUE	11 WED	12 THU	13 FRI	14 SAT	15 SUN	16 MON	17 TUE	18 WED	19 THU	20 FRI	21 SAT	LST
Opt 47 System		_A2010 rg	A2010 rg	A2010 rg	A2010 rg	A2010 rg	X102 pp	A1589 bml	A2010 rg	P2016 dn	A1785 tg	P1920 jh	P2017	A2010	A2010	A2010_	
Cȟecks	2		-	11007			-		A1972	db -	A2034		-A2034-	A2034	A2034-	-A2034-	
VISITORS	4	F2034	A1967 - lo -	A1967 lo - rc -	-A1859-			A1859_	l		emm	P1979 ss	P-197-9 SS	P-197-9 SS	P_197_9 ss -	P.197.9 - ss -	19
E. Muller M. Haynes R. Giovanelli		- jc/fc	-rc-	-16-	jp	jp	jр	jp	P1871 fj			A2034	A2034	A2034	X102	X102 -	
S. Schneider W. van Driel	6		-		P1693	A1587	A2005	A2005	P1681	_	P1693 pf	X111 to	P1693 pf	A1852 bml			
J. Pandian	8	A1972_	X111		pf	bml 	eb sk -	eb sk-	P1918_	-	-A2032-	-A2032-	-A2032-	-A2032-	A2032	A2032	
A. Wolszczan J. Hessels D. Stinebring		- īmāq - īmāq		MAINT jmmt	MAINT jnmt	MAINT elect			A2005 eb		MAINT elect	MAINT elect	MAINT inmt	MAINT inmt	Х113 рр	P1693_ pf	0
D. Nice D. Backer	10	_		_		-	MAINT	_	_		_	-	_	_	A2011	A2011	
P. Demorest S. Stanimirovic	12	- X111 -	A1852 bml -	-	-		elect	X107	_A1852_ bml	X111 to -	-			-	X108 -	- X111 -	
A. Brown E. Berger		to						X113 pp	5,,,,,						ml	to -	
S. Kulkarni F. Jenet	14	LP1693	X111 - to	-	-		-	-		_P1693_ pf			-	-	_MAINT_ elect		
D. Champion J. Goldston	16	pf -	- ~ -	-			-		A2005_		A2006	-A2006-	-		-	A1852 - bml -	
C. Heiles F. Camilo		-						eb	eb		ab	ab		P1927		4	
I. Stairs M. Putman	18		_P2020_ ds	_ X108 _ ml	_ X108 _ ml	_ X108 _ ml	_ X108 _ ml			P2020 ds -	P1927	X102	_ X108 _ ml		X111 _ to		
J. Cordes M. K. Shepard L. Olmi	20	A2010 rg	A2010 rg	A2010 rg	A2010 rg	A2010 rg	A2010 rg	A2010 rg	X111 A2005	X111 to -	ds -	- pp	A2010 rg	A2010 rg	rg -	A2010 rg	12
R. Cesaroni		- mh	mh 	_mh	_mh_			_mh_	P1477	A2031		 A2031	⁻mīh⁻	-mīh-	_mh_	mh -	12
VER 3.0 - 050605	22	-	-	-	-	LR2096_ mks	_R2096_ mks	-	- aw -	eh - Templ	P1920 jh	- eh - Templ	-	-	-		
	24								P2016	A1785] ,	P2017					


This week's schedule

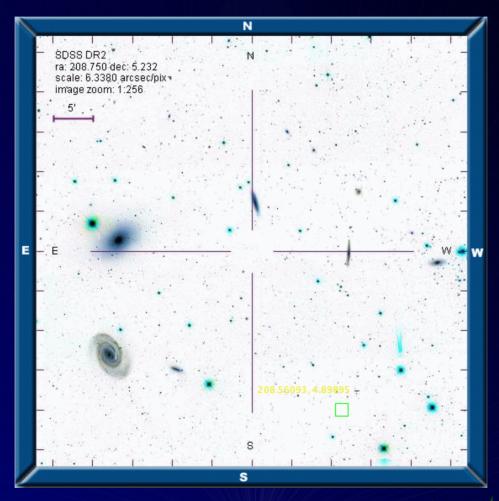
Arecibo Observatory Telescope Schedule

July 2 - July 16, 2005

LST

TRANSMITTERS

Observing Team Tasks


- Designated observer (Sabrina: May 18-Jun 4)
 - Executes and monitors observing
 - Writes log file of scans with times, notes, etc.
 - Creates list of good fits files
 - Updates Arecibo website with log, cimalog, fitslist
 - Converts FITS to raw IDL
 - Verifies data quality (first check)
- · Designated Arecibo file monitor (Barbara/Brian/Martha)
 - Checks that files were converted properly
 - Checks that IDL files are transferred to CU
- Designated CU archivist (Martha/Brian)
 - Relocates files to proper disks at CU
 - Insures and logs file status and location
 - Updates CU website with file info
- · Designated scheduler (Martha/Brian)
 - Produces and maintains detailed schedule
 - Checks/updates a2010.cat at Arecibo
 - Updates Arecibo/CU websites with scheduling info

So, enough talk; let's observe....

